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Imaging Techniques for the Differentiation of Progression and Pseudoprogression in High Grade Gliomas 

• The current standard treatment protocol for glioblastoma is surgical resection followed by 6 weeks 
of radiation therapy plus concomitant temozolomide chemotherapy (CCRT) and 6 cycles of adjuvant 
temozolomide chemotherapy1

• A significant challenge post-CCRT is the presence of radiation-induced side effects, such as 
pseudoprogression (PsP) 

• PsP is generally defined radiologically as a new or enlarging area(s) of lesion(s) occurring early after 
the end of radiotherapy, which subsides or stabilizes without a change in therapy in the absence of 
true tumor growth (tumor progression, PD)2

• PsP is thought to be caused by blood-brain barrier breakdown causing leakage of contrast agent and 
also treatment-activated immune cells infiltrating the tumor microenvironment3

• Enlarged enhancing lesions on conventional MR images may represent PsP in up to 46.8%–64% of 
cases4

• The difficulty in distinguishing PD from PsP impedes clinical decision making in the treatment of 
patients

• Numerous attempts have been made for discrimination with non-invasive imaging-based techniques

Fig 1. Pseudoprogression in a 59-year-old man with GBM. An MR image obtained 1 month after CCRT demonstrates an expansion of the right temporal 
lesion. Reductions in both the enhancing lesion (T1WI) and the surrounding abnormal hyperintense area (T2WI) were seen in the follow-up images.6

Author (Year) Predictive Component Imaging Techniques Size Ground Truth Predictive ability Conclusions

Tsien et al. 
(2010)8

PRMrCBV- and PRMrCBF- T1WI-Gd, gradient-echo 
T2WI

27 Macdonald Criteria P(PRMrCBV-)= 0.001; 
P(PRMrCBF-)= 0.107

PRM applied to physiologic MRI maps could be an important 
biomarker in determining PsP from PD

Ismail et al. 
(2018)9

Shape features of lesion habitat from 
conventional MRI

T1WI, T2WI, FLAIR 105 RANO Criteria 90.85% Accuracy Local+global shape attributes from the enhancing lesion and 
perilesional areas from conventional MRI could improve the 
distinction of PsP from PD

Cha et al. 
(2014)10

Multiparametric histogram analysis using 
region of interest and rCBV and ADC 
values

T1W1, DWI, PWI 35 RANO Criteria 94.3% Accuracy Multiparametric 3D histogram analysis with ADC values and 
rCBV was useful to evaluate posttreatment glioblastomas

Elshafeey et al. 
(2019)11

Classifier using radiomic features from 
Ktrans and rCBV maps

DSC, DCE 98 Pathological 90.82% Accuracy MR perfusion-based radiomic model demonstrates high 
accuracy, sensitivity and specificity in discriminating PsP 
from PD

Matsusue et al. 
(2010)12

Multiparametric scoring system from 
ADC, rCBV, and combined Cho/Cr and 
Cho/NAA ratio

DWI, DSC, MRS 15 Lesion size change in 
follow-up MRI

93.3% Accuracy Quantitative mpMRI ML analysis reveals distinctive 
posttreatment noninvasive signatures of PD versus PsP

Brahm et al. 
(2018)13

SUVmax and T/N ratio from FLT PET Serial FLT PET 24 Macdonald Criteria P>0.05 for all values Further evaluation of FLT PET imaging is warranted to define 
its predictive ability

Galldiks et al. 
(2012)14

18F-FET PET tumor brain ratios 18F-FET PET compared to 
T1WI-Gd

25 Macdonald Criteria n/a TBR reduction in 18F-FET PET may add valuable information 
to diagnose pseudoprogression.

Jang et al. 
(2018)15

CNN-LSTM structure ML algorithm using 
both MR imaging and clinical information

T1WI-Gd 78 Surgical (PD) or 
pathological (PD/PsP)

0.74 F1 Score The ML algorithm with 9 selected axial MR images and 
clinical factors showed acceptable performance in 
differentiating PsP and PD.

Akbari et al. 
(2020)16

Quantitative ML analysis of mpMRI T1WI, T1WI-Gd, T2WI, 
FLAIR, DTI, DSC

63 +
20(ii)

Pathology scores derived 
from histological analysis

85.5%, 75% (ii 
cohort) Accuracy 

Quantitative mpMRI ML analysis reveals distinctive 
posttreatment noninvasive signatures of PD versus PsP

• MRI is the current standard for imaging evaluation of GBM for diagnosis and measurement of 
response in both clinical practice and clinical trials

• The required sequences of the current MRI are three-dimensional T1-weighted images (T1WI), axial 
bi-dimensional T2-Fluid-attenuated inversion recovery (FLAIR) images, and axial bi-dimensional 
diffusion-weighted imaging (DWI) before gadolinium-based contrast agent is administered

• After contrast agent administration, the required sequences are axial bi-dimensional T2-weighted 
images (T2WI) and T1WI5

• Macdonald criteria (1990) uses T1WI to measure 2D contrast enhancement of the enhancing lesion
• RANO criteria (2010) uses T1WI and T2/FLAIR to measure 2D contrast enhancement of the 

enhancing lesion and non-enhancing lesions7

• Literature were collected through sources referenced by reviews, as well as PubMed and Google 
Scholar databases using combinations of search terms including “pseudoprogression,” “progression,” 
“glioblastoma,” “imaging,” “MRI,” “PET,” and “machine learning”

Discussion

• Review suggests significant potential in advanced MRI, PET imaging, and ML in developing 
techniques for distinguishing between PD and PsP, but does not define a singular best method

• There is still a need for a clinically validated and accessible technique, meta-analysis suggests 
large, multicenter, longitudinal prospective trials

• Imaging comes with many limitations; alternative differentiators should be explored
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Author (Year) Study Type (35 total) Size (N=1174) Results Conclusions

van Dijken et al. 
(2017)17

Anatomical MRI 
ADC 
DSC
DCE 
ASL 
MRS

5 studies; n=166
7 studies; n=204
18 studies; n=708
5 studies; n=207
2 studies, n=102
9 studies; n=203

Sensitivity 68% (51-81); Specificity 77% (45-93)
Sensitivity 71% (60-80); Specificity 87% (77-93)
Sensitivity 87% (82-91); Specificity 86% (77-91)
Sensitivity 92% (73-98); Specificity 85% (76-92)
Sensitivity (52-79 Range); Specificity (64-82 Range)
Sensitivity 91% (79-97)); Specificity 95% (65–99)

Highest diagnostic accuracy for spectroscopy and 
perfusion MRI
Meta-analysis supports the incorporation of advanced 
MRI in high-grade glioma treatment response assessment
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