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Intfroduction

Acrylic polymers are fundamental to paint and coating industries. High
purity acrylates desired to avoid discoloration and moisture sensitivity.

Free-radical polymerization (FRP) conventionally depends on:
» High operating temperature (T): low MW, low solvent resins
» Thermal- or photo-initiators: jumpstart polymerization

Conventional initiators costly and may contaminate final product.
> Self-initiation mechanisms: high purity product but slow

Molecular oxygen- triplet-diradical species observed to inhibit FRP at
low T (reduces rate and final conversion).

New Studies: oxygenated n-butyl acrylate (nBA) - polymerizes above
120°C and dependence on O, concentration.

This computational study proposes an initiation mechanism dictated by
O, addition fo an acrylate monomer. This implies O, can act as an
initiator-catalyst in high-T alkyl acrylate polymerization.

Computational Methods

Density Functional Theory (DFT) calculations with GAMESS

computational chemistry package.
> Restricted-open shell Hartree-Fock (ROHF) constructs wavefunctions as
unrestricted-open-shell Hartree-Fock (UHF) infroduces spin contamination
» The well-validated Becke-Lee-Parr hybrid functional (B3LYP) for acrylate systems
and Gaussian basis set 6-311G** were used for stationary point and frequency
calculations

Rate constant k(T) calculations follow transition state theory (TST)
o 1—mksT AS* AH*
(1) = ()= exp (S ) e (= 57) (1)

: Wigner Tunneling corrected ¢’ :inverse reference volume assumed in
transmission coefficient ideal gas translational partition function
m . molecularity of reaction kg: Boltzmann's constant

h :Planck’s constant R :ideal gas constant
AS*: activation entropy AH*: activation enthalpy

Which may be written as an Arrhenius equation: k(T) = Aexp (— i—“T) (2)

For C-O bond dissociation and radical termination, k(T) calculated by

k() = ()" exp(- 70 (3)

Non-ideality of dissolved O, is approximated by solvation entropy
correction based on low solvent and ideal mixing assumptions

Xo,(
ASsotation = Rln (M) (4)

X0, (dis)
where X, 4) Is OXygen concentratfion in above gas and X, (gis) 1S

oxygen concenftration dissolved in liquid monomer.
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Results

Methyl acrylate (MA) monomers M were studied preliminarily due to
similar chemical characteristics as NBA while less computationally costly

O, Inhibition for Methyl Acrylate

» Oxygen inhibition, on self-
initiation mono-radicals
* MH, decreases with
increasing temperature.

Table I: Gibbs Free Energy (AG) and TAS in kJ/mol and Rate Constants k(7) at Various
Temperatures for Radical Termination (forward) and C-O Dissociation (reverse) Reactions
for O, and MA Mono-radical *M-H with B3LYP/6-311G**

273K 298 K 393K 413K 453 K 473K

AG™ d -48.5 -45.3 -33.2 -30.7 -25.6 -23.1 .
Jorwar The converse is true for C-
TAS * forward -34.6 -37.8 -50.0 -52.5 -57.4 -59.9 . . e
forward (M's)  24x10%  13x102 69x10% 22x10% 32x107 1.4x107 O dlSS(.).CICITIOH . C e
K(T) > Instability for O, inhibiting
reverse (s) 30x10°  7.1x10*  3.1x10%  L.1x10° 1.0x10% 2.8x10! .
| o , mechanisms at elevated
+ AG gyerse is ~“AGy,,.rq and is not included for brevity (as follows for TAS . s )
temperature

O,-Catalyzed Initiation Mechanism for MA and nBA

® /iy a\| © R—0 N\ 4 J
0 N\ 7o \\ 0/ ® 0
R\o/u\/\o/o. R\o)l\°/\o/o\H Q . H, O
\0/

M =MA or nBA R = CH; or (CH,);CH; R’= CH, or CH(CH,),CH;

Figure 1: (a) oxygen addition to monomer, (b) propagation off peroxyl radical, (c) mono-radical generation by

hydrogen transfer to monomer, (d) mono-radical generation by hydrogen transfer from monomer, (e) propagation
off secondary-carbon radical, (f) C-O dissociation. (g) mono-radical generation by backbiting.

Proposed Mechanism:
1) Markovnikov addition M + O, , producing triplet-diradical intermediate (a)
2) New M propagates off active carbon radical (e)
3) O, leaves triplet-diradical dimer by C-O dissociation, driven by entropy (f)

C-O dissociation (f) or Backbiting (g) at elevated T ?
» Similar enfropic contributions
» Exothermicity favors C-O dissociation
» Enthalpic difference approximately C-H bond formation

O, functions as a true catalyst

Self—initiation
> k(413) =1.1 x 10-14 M-1s-!
> Slow singlet-triplet
iIntersystem crossing

O,—catalyzed initiation
> k(413)=1.5x 107 M-1s-!
> (a) rate limiting, O,
adsorption onto M, AS™ <0

7 orders of magnitude quicker than self-initiation mechanism
k(473) =2.0x 10> M-'s't > T boosts O, initiation

Mentor: Dr. Andrew M. Rappe, SAS Chemistry Department

Conclusions

Character of Molecular Oxygen in Alkyl Acrylate Polymerization
Low Temperature Inhibitor High Temperature Initiator-Catalyst

DFT calculations reveal and support that
» Rate limiting step- O, opening monomer vinyl group to form
active ftriplet-diradical
» Monomer readily propagates off triplet-diradical intermediate
> O, thermally dissociates from active triplet-diradical dimer

In studying oxygen'’s participation as an initiator-catalyst, oxygen
initiation mechanisms provide faster reaction times compared to
thermal self-initiation.

Table II: Activation Energy (E,) and Gibbs Free Energy (AG,,,) in kJ/mol, Entropy (AS,,,) in J/molK, and Rate Constants k at 413K
for Oxygen-Monomer Reactions in Figure 4 for MA (no shading) and nBA (shading) with B3LYP/6-311G**

Initiation Mono-Radical Generation Diradical Propagation Peroxyl Radical Termination

() (b) (© ) (e) UM (8
132.8 90.8 77.2 47.7 34.5 135.0 99.4
133.2 91.8 66.7 50.9 37.1 135.8 105.0
168.9 151.6 135.5 113.8 94.0 74.7 102.5
176.3 164.1 133.2 127.5 108.7 73.5 104.3
-104.1 -164.0 -157.8 -176.5 -160.6 137.7 -15.8
-121.0 -191.5 -177.6 -202.1 -190.0 142.7 -6.8
1.5x107M st | 62x105M st 5.0x 103 M's! 1.4 Mgt 4.2x10>M's’! 3.1x10%s! 1.5
1.7x108M st | 1.6x106M st 1.0x102M's!  2.6x 102 M's! 57 M's! 44x103s! 8.5x 10! 5!

+ AG, and ASy, are given for the difference between products and reactant, not transition state and reactant(s)

k(413)
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