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Purpose

Vertebral fractures comprise almost 50% of osteoporotic fractures in the United States.
Vertebral deformity fractures can be classified as wedge, biconcave, or crush, depending
on the anterior (Ha), middle (Hm), and posterior (Hp) heights of each vertebral body.
However, determining these measurements is time-consuming and resource intensive.

and segment vertebral bodies for 3D bone quality assessment. We report the
development and testing of a deep learning neural network implementation for analyzing
sagittal spine CT and MR images.

Methods

Sagittal spine MR (T1) and CT scans (MR = 998 subjects, age 67 £ 11yrs; CT = 35
subjects, age 64 + 3yrs; all female) were used to train two networks (Fig.1 under
“Results” section). A key-point detection network was trained with 4622 labeled
vertebral bodies--augmented to 5667 vertebrae (4398 MR, 1269 CT)--to find
relevant points for height calculations. A 3D segmentation network was trained with
labelled scans (68 MR, 35 CT) to extract volumes of vertebral bodies and discs.
Accuracy of the neural networks were measured using two parameters: 2D/3D Dice
score (ranges from 0 to 1 where 1 means predicted segmentation = labelled ground
truth) and error distance (distance of predicted key-point location to true location).
Each network was evaluated with 238 MR and 15 CT scans.
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Artificial Intelligence algorithms offer the ability to automatically determine Ha, Hm, and Hp
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handle basic patient information, serving as a patient chart for documentation,
viewing of scans, and sending out prescription orders. xRAD will also help hospitals
determine statistics and analytics of their patient population. After stress testing, the
EMRS is projected to pilot in rural hospitals in the Philippines by October 2020.
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Figure 1: Basic overview of the Neural Network layout. Picture shown for MRI
series. Different colors in 3D instance segmentation represent distinct vertebral
body volume outputs from algorithm. RCNN stands for recurrent convolutional
neural network. A U-Net is a type of CNN (convolutional neural network).
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Table 1: Performance statistics of neural network on MR and CT. Vertebral
discs not visible in CT scans. hence no 3D Dice Score for that value.
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Conclusion

The neural network was able to determine morphometric measurements for detecting
spinal deformities with high accuracy on sagittal MR and CT images. Additionally, it was
able to extract 3D volumes for vertebral bodies and discs. Thus we were able to show Al
algorithms are able to automatically extract measurements for rapid quantification of
vertebral bone health. This approach could simplify the screening, detection of changes,
and surgical planning in patients with vertebral deformities and fractures by reducing the
burden on radiologists who have to do these measurements manually.
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Botswana Project
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Another project was worked on in collaboration with oncologist Dr. Yehoda Martei. We
designed a database that could be used in select cancer clinics within Botswana. The
database acts as a query to receive and store patient information. Also, given certain
parameters, it is also a clinical aid that provides medications, doses, and suggestions for
treatments automatically after patient entry. The database was designed within Excel to
avoid the need for WIFI. It is currently being tested within some clinics. Future
modifications can be added to the database given the necessities of each clinic.

The Head CT project is still ongoing. The project seeks to develop a convolutional
neural network to reduce the planning time for oral and maxillofacial surgery. Using
DICOM series of head CT scans, we created a 3D model of the mandible within the
Slicer application. The mandible would be digitally isolated by erasing portions of the
upper teeth, the cervical spine, and a majority of the skull. The 3D model would then
be smoothed, masked, and stored in a central database to await further analysis.




