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Recurrent Neural Networks

» Applications involving learning from real-time/online data are ubiquitous
= Natural language processing and object recognition

» Objective is to map sequential data {x;}/ , to a target representation y;
» Data points x; related through some unknown dependency f(x)

Xir1 = f(Xf:, b S . )

» Dependence relationship can be modeled as a Hidden Markov Model
= State variable h; stores relevant past time information
= X¢.1 only depends on X; and hy = X;.1 = g(X;, hy)

» Recurrent Neural Networks (RNNs) approximate the hidden state as

h; = U(AXf = s Bhg_-])
» A and B are linear transforms, o is a nonlinear function

» Representation estimate y; calculated from h; = y; = o(Chy)

Graph Processes

» RNNs are limited to processing regular data = time signals, images

» Unsuited to problems presenting alternative data structures
= Weather station networks for irrigation of agricultural crops

= Traffic networks established by people commuting from one county to another

» Graphs encode arbitrary pairwise relationships between data elements
= Data is represented as a signal on the nodes = graph signal
= Underlying structure has to be incorporated into processing

Graph Recurrent Neural Networks

» Information processing architecture to learn from graph processes
= Exploits both sequential and graph structural information

» Network structure = Graph matrix S
= [S]; = relationship between i, j
= S is the same for all ¢

» X; graph signal at time t
= [X¢]; = signal value at node i

» A and B parametrized by the graph
h; = o(A(S)X; + B(S)h;_1)

» Graph Recurrent Neural Network

Parametrize linear operations A(S) and B(S) such that:
= They exploit the structure of the graph
= The number of parameters is independent of time and graph size

= The operations are permutation invariant
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~ Graph Convolutions

» Our GRNNSs generate features through local graph convolutions
= Convolution is a linear shift invariant filter = K filter taps

K—1
Yy = hoo X+ hS x4+ S +...+ he 48" Tx = ) hmS"x = H(S)x
k=0

= Linear operation that exploits graph topology at the local level
= Permutation invariant = H(PSPT)Px = PH(S)P"Px = PH(S)x

Graph Convolutional Recurrent Neural Networks

» We write A(S) and B(S) as graph convolutions to exploit locality

K—1 K-1
AS) =) aSF B(S) =) bS8
k=0 0

» h;is a graph signal to avoid any dependence on the number of nodes
» A(S) and B(S) could be replaced by GNNs for increased capacity
» The output estimate is calculated as y; = p(C(S)h;)

= C(S) is another linear graph filter or GNN

= p is a nonlinear activation function

Time Gating

» What if a strongly/weakly correlated sequence becomes too long?

= Longer time dependencies get exponentially larger/smaller weights
» Gradients might vanish or explode = dependencies harder to encode
» Solution: time gating with input and forget gates ;. J; € [0, 1]

= Create paths through time where gradients are well-behaved

= Input gate «o; controls importance of input x; at time t

= /3; decides how much to “forget” from previous state h;_

h; = {T(HrA(S)X; =+ .}J,‘B(S)h;_1>

= Time-gated Graph Recurrent Neural Network (t-GRNN)

Node Gating

» Graphs allow for other forms of gating = spatial gates
» Node gating = «; and 3, are vectors in [0, 1]V

h; =0 (diag(n;)A(S)x; = dlag(f;)B(S)h3_1)

= One input and one forget gate for each node of the graph
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= Node-gated Graph Recurrent Neural Network (n-GRNN)

~ Edge Gating

» Edge gating = a; and 3, are matrices in [0, 1]V*N
h; = U(ru A(S)Xr + 3¢ (- B(S)hf_'1)

= One input and one forget gate for each edge of the graph

= Edge-gated Graph Recurrent Neural Network (e-GRNN)
Gate Computations

» Gates are calculated as the output of GRNNs themselves

» Time gating: GRNN + fully connected layer + sigmoid
= Fully connected layer maps state’s features to a scalar
= Sigmoid ensures ay, 3¢ € [0, 1]

» Node gating: GRNN + GNN + sigmoid
= GNN maps state’s features to single-feature graph signal
= Sigmoid ensures «y, 3; € [0, 1]V

» Edge gating: GRNN + Graph Attention Network (GAT)
= Edge gates are attention coefficients a; of GAT

aj = softmax;(e;) ej = a(W[hy;, W[hy];)

= a maps the features of h; at nodes i and j to g € R
= Softmax over j ensures oy, 3; € [0, 1]V*N

Performance Benchmark: 5-step Prediction

» 5-step noisy graph diffusion, where w is a Gaussian noise
X; = SX;_1 + Wy

» Problem: predict Xs, Xg, X7, ... from Xg, X1, Xo, . ..
» GRNN compared with GNN and RNN with same number of parameters

Archit. | Rel. RMSE

GRNN VS. GNN 11.39%

GRNN VS. RNN 19.95%

» GRNN outperforms GNN by > 10 p.p.
» GRNN and RNN achieve similar results = GRNN is a subcase of RNN
= But structure allows GRNN to learn faster than RNN

Influenza Case Estimation

» New York's 62 County’s Commuting Network
» Dataset: 2010 Flu cases per county per four weeks

» Predict amount of cases per county in the following four weeks
» After fine tuning parameters we reached a 59%error

== GCRNNMLP
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» The dataset did not have long time or distance dependencies, making a
normal (non gated) GRNN more suited for the job
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Performance Benchmark: Time Gating in AR(1) Process

» Noisy AR process with parameter a = X; = ax;_1 + Wy

» 0 < a<1,w, Gaussian noise, prediction 10 steps ahead
» GRNN compared with --GRNN for multiple values of a

L=
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a=09

Rel. RMSE Improvemen (%)

» Highly correlated process (large a) = X; =~ X;_1 =~ ... = X¢_10
= Memory within the process = X; is more informative than h;
= Gates a; T 1 and J; | 0 help improve performance

Performance Benchmark: Spatial Gating

» Node gating: graph diffusion process with S¢

o oww

X; = S%;_4 + W;

» 0 < a<1,w; Gaussian, 10 steps ahead I
» GRNN compared with n-GRNN
» Large a = Xx; is more informative =- effect of 3; | 0
» Small a = h;is more informative = effect of a; | 0
» Performance gains are more substantial the mid-range

= The effect of both the input and forget gates can be perceived
Conclusions

» Introduced Graph Recurrent Neural Networks
= Tailored to problems involving graph processes
= Exploit graph structure through graph convolutions
= Exploit sequential data through state recurrence
= Gating allows encoding long-term dependencies
» Observed performace improvements
= Synthetic dataset = K-step prediction
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