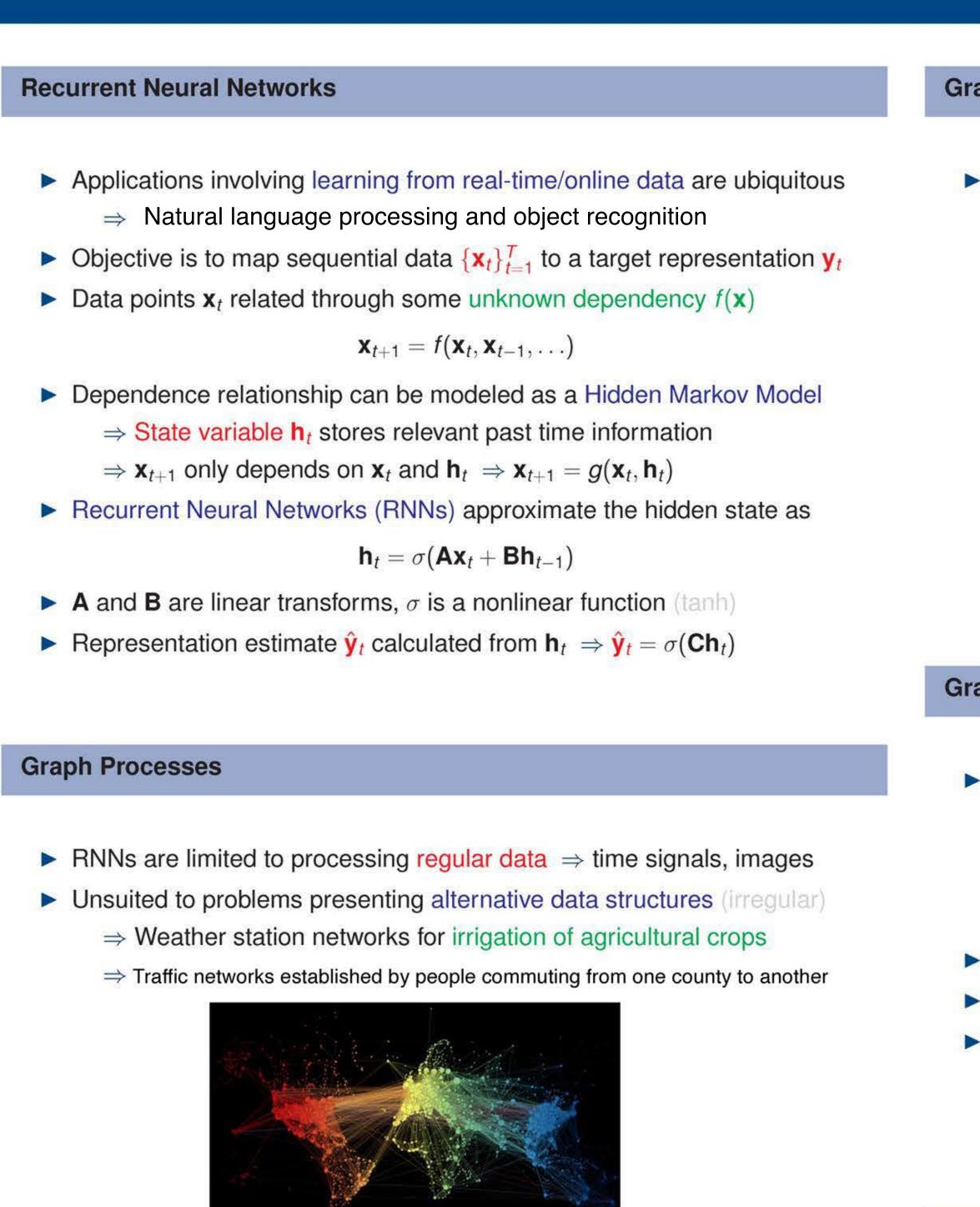
GATED GRAPH RECURRENT NEURAL NETWORKS



Graphs encode arbitrary pairwise relationships between data elements \Rightarrow Data is represented as a signal on the nodes \Rightarrow graph signal \Rightarrow Underlying structure has to be incorporated into processing

Graph Recurrent Neural Networks

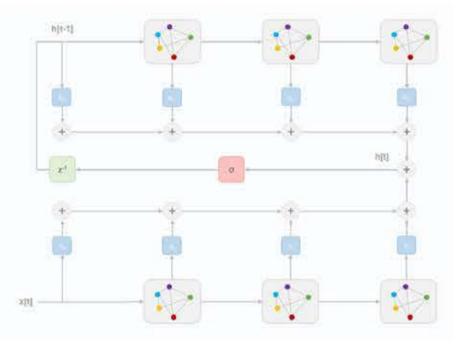
Information processing architecture to learn from graph processes \Rightarrow Exploits both sequential and graph structural information

 \blacktriangleright Network structure \Rightarrow Graph matrix S \Rightarrow [**S**]_{*ij*} = relationship between *i*, *j* \Rightarrow **S** is the same for all t \blacktriangleright **x**_t graph signal at time t $\Rightarrow [\mathbf{x}_t]_i = \text{signal value at node } i$

► A and B parametrized by the graph

$$\mathbf{h}_t = \sigma(\mathbf{A}(\mathbf{S})\mathbf{x}_t + \mathbf{B}(\mathbf{S})\mathbf{h}_{t-1})$$

Graph Recurrent Neural Network



Objective

Parametrize linear operations A(S) and B(S) such that:

- \Rightarrow They exploit the structure of the graph
- \Rightarrow The number of parameters is independent of time and graph size
- \Rightarrow The operations are permutation invariant

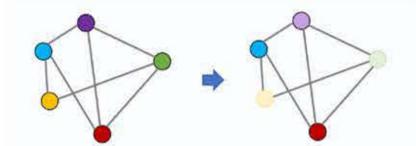
Mariana Luna and Ricardo del Rio. Mentors: Luana Ruiz and Alejandro Ribeiro

Dept. of Electrical & Systems Engineering, University of Pennsylvania

Graph Convolutions Edge Gating Our GRNNs generate features through local graph convolutions \Rightarrow Convolution is a linear shift invariant filter \Rightarrow K filter taps $\mathbf{y} = h_0 \mathbf{S}^0 \mathbf{x} + h_1 \mathbf{S}^1 \mathbf{x} + h_2 \mathbf{S}^2 \mathbf{x} + \ldots + h_{\mathbf{K}-1} \mathbf{S}^{\mathbf{K}-1} \mathbf{x} = \sum h_k \mathbf{S}^k \mathbf{x} := \mathbf{H}(\mathbf{S}) \mathbf{x}$ \Rightarrow Linear operation that exploits graph topology at the local level \Rightarrow Permutation invariant \Rightarrow H(PSP^T)Px = PH(S)P^TPx = PH(S)x **Gate Computations** Time gating: GRNN + fully connected layer + sigmoid **Graph Convolutional Recurrent Neural Networks** \Rightarrow Sigmoid ensures $\alpha_t, \beta_t \in [0, 1]$ ► We write **A**(**S**) and **B**(**S**) as graph convolutions to exploit locality Node gating: GRNN + GNN + sigmoid $\mathbf{A}(\mathbf{S}) = \sum_{k=1}^{N-1} a_k \mathbf{S}^k \qquad \mathbf{B}(\mathbf{S}) = \sum_{k=1}^{N-1} b_k \mathbf{S}^k$ \Rightarrow Sigmoid ensures $\alpha_t, \beta_t \in [0, 1]^N$ \mathbf{h}_t is a graph signal to avoid any dependence on the number of nodes A(S) and B(S) could be replaced by GNNs for increased capacity For the output estimate is calculated as $\hat{\mathbf{y}}_t = \rho(\mathbf{C}(\mathbf{S})\mathbf{h}_t)$ \Rightarrow **C**(**S**) is another linear graph filter or GNN \Rightarrow Softmax over *j* ensures $\alpha_t, \beta_t \in [0, 1]^{N \times N}$ $\Rightarrow \rho$ is a nonlinear activation function (eq. softmax) **Performance Benchmark: 5-step Prediction Time Gating** What if a strongly/weakly correlated sequence becomes too long? ⇒ Longer time dependencies get exponentially larger/smaller weights **Problem:** predict $\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \dots$ from $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots$ ► Gradients might vanish or explode ⇒ dependencies harder to encode Solution: time gating with input and forget gates $\alpha_t, \beta_t \in [0, 1]$ \Rightarrow Create paths through time where gradients are well-behaved \Rightarrow Input gate α_t controls importance of input \mathbf{x}_t at time t $\Rightarrow \beta_t$ decides how much to "forget" from previous state \mathbf{h}_{t-1} $\mathbf{h}_t = \sigma \Big(\alpha_t \mathbf{A}(\mathbf{S}) \mathbf{x}_t + \beta_t \mathbf{B}(\mathbf{S}) \mathbf{h}_{t-1} \Big)$ ► GRNN outperforms GNN by > 10 p.p. ⇒ Time-gated Graph Recurrent Neural Network (t-GRNN) Influenza Case Estimation **Node Gating** New York's 62 County's Commuting Network • Graphs allow for other forms of gating \Rightarrow spatial gates ▶ Node gating $\Rightarrow \alpha_t$ and β_t are vectors in $[0, 1]^N$

 $\mathbf{h}_t = \sigma \Big(\operatorname{diag}(\alpha_t) \mathbf{A}(\mathbf{S}) \mathbf{x}_t + \operatorname{diag}(\beta_t) \mathbf{B}(\mathbf{S}) \mathbf{h}_{t-1} \Big)$

 \Rightarrow One input and one forget gate for each node of the graph



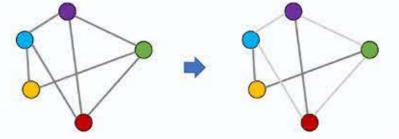
⇒ Node-gated Graph Recurrent Neural Network (n-GRNN)

The dataset did not have long time or distance dependencies, making a normal (non gated) GRNN more suited for the job

• Edge gating $\Rightarrow \alpha_t$ and β_t are matrices in $[0, 1]^{N \times N}$

$$\mathbf{h}_t = \sigma \Big(\alpha_t \odot \mathbf{A}(\mathbf{S}) \mathbf{x}_t + \beta_t \odot \mathbf{B}(\mathbf{S}) \mathbf{h}_{t-1} \Big)$$

 \Rightarrow One input and one forget gate for each edge of the graph



⇒ Edge-gated Graph Recurrent Neural Network (e-GRNN)

Gates are calculated as the output of GRNNs themselves

- ⇒ Fully connected layer maps state's features to a scalar

- \Rightarrow GNN maps state's features to single-feature graph signal
- Edge gating: GRNN + Graph Attention Network (GAT)
 - \Rightarrow Edge gates are attention coefficients a_{ii} of GAT

$$a_{ij} = \text{softmax}_i(e_{ij})$$
 $e_{ij} = a(\mathbf{W}[\mathbf{h}_t]_i, \mathbf{W}[\mathbf{h}_t]_j)$

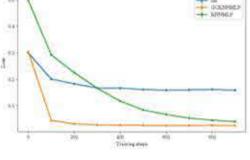
 \Rightarrow a maps the features of \mathbf{h}_t at nodes *i* and *j* to $e_{ij} \in \mathbb{R}$

5-step noisy graph diffusion, where w is a Gaussian noise

$$\mathbf{x}_t = \mathbf{S}\mathbf{x}_{t-1} + \mathbf{w}_t$$

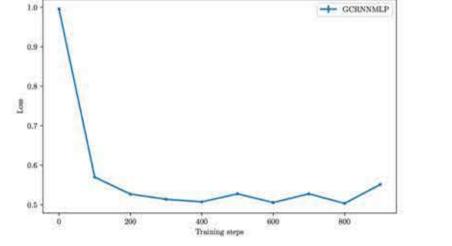
GRNN compared with GNN and RNN with same number of parameters

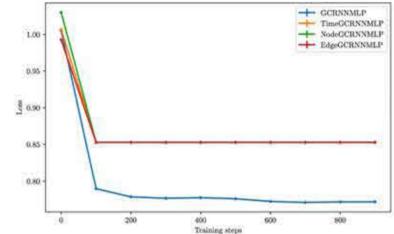
Archit.	Rel. RMSE	
GRNN VS. GNN	11.39%	
GRNN VS. RNN	19.95%	



► GRNN and RNN achieve similar results ⇒ GRNN is a subcase of RNN \Rightarrow But structure allows GRNN to learn faster than RNN

Dataset: 2010 Flu cases per county per four weeks Predict amount of cases per county in the following four weeks After fine tuning parameters we reached a 59% error







Performance Benchmark: Spatial Gating

- - \Rightarrow The effect of both the input and forget gates can be perceived

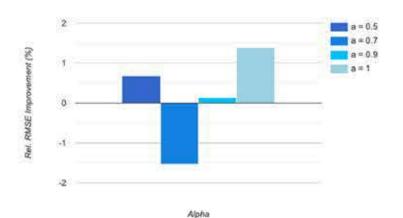
Conclusions

References

- June 2019.
- F. Gama et al., "Convolutional neural network architectures for signals supported on graphs," Trans. Signal Process., 67 (4), 1034-1049, Feb. 2019.
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge, MA, 2016.
- Earthquake Commission, GNS Science, and Land Information New Zealand, "GeoNet," https://www.geonet.org.nz/, 20 Feb. 2019.

Performance Benchmark: Time Gating in AR(1) Process

Noisy AR process with parameter $\mathbf{a} \Rightarrow \mathbf{x}_t = \mathbf{a}\mathbf{x}_{t-1} + \mathbf{w}_t$ \triangleright 0 < $a \le 1$, w_t Gaussian noise, prediction 10 steps ahead GRNN compared with t-GRNN for multiple values of a

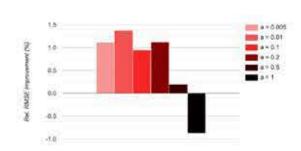


▶ Highly correlated process (large a) $\Rightarrow \mathbf{x}_t \approx \mathbf{x}_{t-1} \approx \ldots \approx \mathbf{x}_{t-10}$ \Rightarrow Memory within the process $\Rightarrow \mathbf{x}_t$ is more informative than \mathbf{h}_t \Rightarrow Gates $\alpha_t \uparrow 1$ and $\beta_t \downarrow 0$ help improve performance

Node gating: graph diffusion process with S^a

$$\mathbf{x}_t = \mathbf{S}^{\mathbf{a}} \mathbf{x}_{t-1} + \mathbf{w}$$

 \blacktriangleright 0 < $a \le 1$, w_t Gaussian, 10 steps ahead GRNN compared with n-GRNN



Large $a \Rightarrow \mathbf{x}_t$ is more informative \Rightarrow effect of $\beta_t \downarrow \mathbf{0}$

- Small $a \Rightarrow \mathbf{h}_t$ is more informative \Rightarrow effect of $\alpha_t \downarrow \mathbf{0}$
- Performance gains are more substantial the mid-range

Introduced Graph Recurrent Neural Networks \Rightarrow Tailored to problems involving graph processes \Rightarrow Exploit graph structure through graph convolutions \Rightarrow Exploit sequential data through state recurrence \Rightarrow Gating allows encoding long-term dependencies Observed performace improvements \Rightarrow Synthetic dataset \Rightarrow K-step prediction

L. Ruiz et al., "Gated Graph Convolutional Recurrent Neural Networks," arXiv:1903.01888v3 [cs.LG].