

Integrating Brain Imaging for Outcome Prediction in Alzheimer's Disease Jeffrey Qu (SEAS 2023)^{1,2,3}, Mansu Kim^{1,2}, Kefei Liu^{1,2}, Dr. Li Shen^{1,2} Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine¹; Institute for Biomedical Informatics²; University of Pennsylvania School of Engineering and Applied Sciences³

Introduction

Background Information

- Alzheimer's is a progressive disease that causes memory loss and interferes with cognitive function.
- Extensive research has been conducted to identify causes and possible treatments.
- One particular area of focus is early detection of the disease, from which brain imaging has emerged as a powerful diagnostic tool.

Figure 1. Side-by-side comparison illustrating shrinking of brain tissue as a result of Alzheimer's.

Figure 2. Labels used for

to different stages of

Alzheimer's.

Progression of Alzheimer's Disease

Objectives

Develop and implement machine learning models and apply those to the analysis of brain imaging and outcome data from landmark Alzheimer's disease studies.

Dataset

- Data collected by the Alzheimer's Disease Neuroimaging Initiative (ADNI) was utilized, with the following breakdown:
 - **805** samples total:
 - **196 HC** (healthy controls)
 - **78 SMC** (significant memory concern)
 - 235 EMCI (early mild cognitive impairment)
 - **162 LMCI** (late mild cognitive impairment)
 - **134 AD** (Alzheimer's disease)
- **3** imaging modalities for each sample:
 - **VBM** (voxel-based morphometry)
 - **FDG** (fluorodeoxyglucose positron emission tomography)
 - AV45 (florbetapir-fluorine-18 positron emission tomography)
- **116** measurements taken by each imaging modality, corresponding to different brain regions: amygdala, angular gyrus, calcarine sulcus, cerebellar vermis, etc.

Machine Learning Models

The following support vector machines (SVMs), ensemble classifiers, and deep neural networks (DNNs) were utilized:

- Support vector machines (provided by scikit-learn):
 - **SVC** (Support Vector Classification)
 - LinearSVC (Linear Support Vector Classification)
 - **NuSVC** (Nu-Support Vector Classification)
- Ensemble classifiers (provided by scikit-learn):
 - **Voting** (Soft Voting/Majority Rule Classifier)
- Deep neural networks (constructed using tensorflow):
 - Model 1: 2 hidden layers, 64 nodes
 - Model 2: 1 hidden layer, 10 nodes
 - Model 3: 4 hidden layers, 512 nodes
 - Model 4: 4 hidden layers, 100 nodes

Results

	Overall	all HC Sens			SMC	SMC		EMCI	EMC		LMCI	LMCI			
	Acc	nc sens	пс эрес	ΠΟΑΟ	Sens	Spec	SIVIC ACC	Sens	Spec		Sens	Spec	AD Sells	AD Spec	<u> </u>
nearSVC	0.63396	0.44472	0.7894	0.61706	0.33202	0.86718	0.5996	0.34151	0.83973	0.59062	0.252	0.86436	0.71567	0.89305	0.
Voting	0.63363	0.43277	0.79728	0.61502	0.3386	0.86092	0.59976	0.34446	0.83467	0.58957	0.25814	0.86003	0.7097	0.8997	С
SVC	0.63221	0.43028	0.79169	0.61099	0.38735	0.84702	0.61719	0.31319	0.84548	0.57934	0.20713	0.87286	0.74105	0.8861	0.
NuSVC	0.62857	0.41036	0.7912	0.60078	0.35705	0.871	0.61402	0.31446	0.83589	0.57517	0.2225	0.86467	0.74627	0.87234	С
nodel1	0.62419	0.37251	0.80072	0.58662	0.33992	0.83027	0.5851	0.2967	0.84513	0.57092	0.30363	0.84134	0.69851	0.91317	0.
nodel4	0.61223	0.38546	0.77315	0.5793	0.33202	0.82823	0.58012	0.27134	0.84897	0.56016	0.28334	0.83949	0.64328	0.91701	0.
nodel3	0.60161	0.38446	0.76773	0.5761	0.28722	0.84811	0.56767	0.30347	0.80781	0.55564	0.24155	0.84829	0.61119	0.91627	0.
nodel2	0.59629	0.2749	0.83831	0.55661	0.42293	0.74867	0.5858	0.22485	0.85891	0.54188	0.22741	0.86683	0.64254	0.85754	0

Figure 4. Sensitivity, specificity, and balanced accuracy for each class for all machine learning models.

	SMC Sens	SMC Spec	SMC Acc		SMC Sens	SMC Spec	SMC Acc
SVC	0.387352	0.847024	0.61719	model3	0.047558	0.975826	0.51169
NuSVC	0.357049	0.870999	0.61402	Voting	0.028278	0.994947	0.51161
Voting	0.338603	0.860918	0.59976	NuSVC	0.021851	0.996176	0.50901
inearSVC	0.332016	0.867184	0.5996	LinearSVC	0.020566	0.996176	0.50837
model2	0.422925	0.748672	0.5858	model4	0.015424	0.994537	0.50498
model1	0.339921	0.830268	0.5851	model1	0.007653	0.998107	0.50288
model4	0.332016	0.828225	0.58012	SVC	0.006427	0.998225	0.50233
model3	0.28722	0.848113	0.56767	model2	0.005102	0.998783	0.50194

80436

.8047

80584

76373

Figure 6. Confusion matrix for LinearSVC model.

Figure 8. Test loss and accuracy for all machine learning models.

Discussion

Normalize training data

- Upscaling training data balances sensitivity and specificity. Models were able to better detect underrepresented classes (i.e. SMC).
- Because of the imbalanced classes, balanced accuracy proved to be a more appropriate metric for analyzing model performance.
- For multiclass classification, models generally had little trouble distinguishing between HC and AD. However, there was frequent confusion between SMC, EMCI, and LMCI. This can be attributed to the proximity of the three classes, which could result in incorrect classification of borderline subjects for a particular class.
- SVMs generally outperformed deep learning models. Among the deep neural networks, smaller networks generally outperformed larger ones. This makes sense in the context of this study, since the dataset was relatively small, and smaller models are less susceptible to overfitting.
- Future work could involve adding gene data as another modularity. Incorporating brain networks is also a possibility through the use of graph convolutional networks (GCNs).

Acknowledgements

This study was supported by the Penn Undergraduate Research Mentoring (PURM) program, the Shen Lab at the Perelman School of Medicine at the University of Pennsylvania, and funding from NIH R01 EB022574, R01 LM013463, RF1 AG063481, and NSF IIS 1837964. The complete ADNI Acknowledgement is available at http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Ac knowledgement_List.pdf.