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Backaground Information  The following support vector machines (SVMs), ensemble classifiers, and deep neural networks
- (DNNSs) were utilized: ‘A’

* Alzheimer’s 1s a progressive disease that causes memory loss and interferes with
cognitive function.
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« Extensive research has been conducted to identify causes and possible treatments. _ _ assificats ® — ;
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Objectives

« Develop and implement machine learning models and apply those to the analysis I " "
of brain imaging and outcome data from landmark Alzheimer’s disease studies. R eS u tS D I SC u SS I O n
-mm » Upscaling training data balances sensitivity and spe(?ificity. Models
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o Voting 043277 0.79728 [0.61502 0.3386 0.86092 0.59976 | 0.34446 | 0.83467 [0.58957 0.25814 0.86003 0.7097 0.8997 0.8047 e Because of the imbalanced classes, balanced accuracy proved to be
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Figure 2. Labels used for
classification, corresponding
to different stages of
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Figure 4. Sensitivity, specificity, and balanced accuracy for each class for all machine learning models. to the proximity of the three classes, which could result in incorrect
- - S DR N classification of borderline subjects for a partlcular class.
Svie SR 0 5470 I o __- y . . . « SVMs generally outperformed deep learning models. Among the
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model2 [0/423525]0.748672 0.5858 modeld 0.015424 0.994537 0.50498 dataset was relatively small, and smaller models are less susceptible
e Data collected bv the Alzheimer’s Disease Neuroimagine Initiative (ADNI) was modell 0.339921 0.830268 0.5851 modell 0.007653 0.998107 0.50288 LMCI 315 146 309 410 447 St
ilized. with hyf llowing breakd _ SIS ( ) model4 0.332016 0.828225 0.58012 SVC  0.006427 0.998225 0.50233 to overfitting. _ _ _
utilizea, with the Tollowing breakdown: model3 [0,28722 0.848113 [0:56767]  model2 |0.005102 [0.998783 [0.50194 SN © .  Future work could involve adding gene data as another modularity.
* 805 samples total: Figure 5. SMC classification performance with Figure 6. Confusion matrix Incorporating brain networks Is also a possibility through the use of
e 196 HC (hgalt_h;_/ controls) upscaling (left) vs. no upscaling (right). for LinearSVC model. graph convolutional networks (GCNSs).
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etc. Figure 7. Learning curve for Model 1. Figure 8. Test loss and accuracy for all machine learning models.



