Impact of RNS Volume Conduction at the Seizure Onset Zone

Sofia Mouchtaris [a,b,d], Brittany Scheid [a,b], Brian Litt [a,b,c]

[a] Department of Bioengineering, University of Pennsylvania [b] Center for Neuroengineering and Therapeutics, University of Pennsylvania [c] Department of Neurology, Hospital of the University of Pennsylvania [d] School of Engineering and Applied Science, Class of 2023

Introduction

- Responsive neurostimulation (RNS) is an FDA approved intervention for epilepsy patients who are medication resistant and are poor candidates for surgical removal of brain tissue
- RNS treatment involves the implant of two electrode leads that continuously monitor neural activity and stimulate when a seizure is detected
- While many patients have a significant reduction in seizure frequency, optimization of RNS therapy is difficult because the mechanism of action is currently unknown
- The objective of this study is to implement a patient-specific volume conduction model to determine the impact of RNS stimulation settings on the seizure onset zone (SOZ)

Methods

- 6 patients with epilepsy undergoing RNS therapy were studied
- A whole brain distributed dipole model was generated for each patient from their reconstructed preoperative MRI scan using Brainstorm
- The electrical potential induced at the SOZ by stimulation was calculated, considering the RNS lead configuration and stimulation intensity

Results

- We found that the proximity of RNS electrode leads to the SOZ did not have a significant association with a patient’s seizure reduction (both patient reported and device recorded)
- The results suggest that the short-term impact of stimulation at the SOZ may not be a primary factor contributing to seizure reduction in RNS patients and that surgical planning of RNS lead targets shouldn’t be constrained by the SOZ site
- Our results are corroborated by the theory that epilepsy is a network disorder and the RNS device serves to modulate the network by strengthening inhibitory connections
- Prior work suggests it is more important to locate RNS leads near particular brain structures rather than the SOZ

Conclusions

- In this proof-of-concept study, we have developed a method for simulating patient-specific RNS lead activation parameters
- Future work includes using our methods to uncover alternative anatomical implant target locations that better correspond with seizure reduction outcomes

References


Acknowledgments

Funding received from the Penn Undergraduate Research Mentoring (PURM) Program