Background and Motivation

- The roundworm is widely used in medical research; however efforts have historically been painstaking, with scientists manually recording the movements of hundreds of worms.
- In response, the WormWatcher software has been designed to analyze worm activity, enabling researchers to study greater numbers at a time. • In order to quantify worm activity, WormWatcher uses a "pixel difference" based approach, described
- below.
- A weakness in this approach has been an inability to compare worms of different sizes; if two worms of differing lengths move one inch, the larger worm causes many more pixels to change than the smaller worm.
- Our solution involved quantifying the locomotion rate of the worms

Pixel Difference method for activity calculation

Quantifying the Activity of the Roundworm (C. elegans)

Mateo Parrado, SEAS 2023 Mentor: Dr. Anthony Fouad and Dr Christopher Fang-Yen, SEAS Funded by PURM

Image at time t=0

Eccentricity

- One way to quantify the locomotion rate of the worms using the eccentricity of an ellipse that we fit around them
- Eccentricity is defined as the ratio of the long axis of an ellipse to the short one
- Worms swim by alternating between a bent and a straight posture
- This causes the eccentricity of an ellipse fit around the worm to alternate as well. It is high when the worm is straight and slightly lower when it is bent
- ocomotion rate

Image at time t=60 s

Count pixels that have changed in intensity to quantify movement

Frequencies measured by my software correlated closely with hand counted data.

bent worm

- pixel difference approach described above
- It then fits an ellipse around it and record its eccentricity
- moving

The same worm but straightened out, and therefore with higher eccentricity

Graph of the eccentricity (peaks shown in red)

Conclusions

However, there is no correlation between the computed frequency and the size of the worms.

Data Analysis

• First the program identifies the worms using the

• Finally, it plots the eccentricity over time and by calculating the frequency of the "peaks" of this graph it determines how much the worm was

Time