Incorporating Strength of Preference Data into Bayesian Models of Choice

Jess Mixon and John McCoy, Wharton Marketing Department

Introduction:

- Gamble choice datasets allow behavioral economists to study individual decision processes involving risk
- In making a choice between 2 dollar/probability combinations people know both which option they prefer and how strongly they prefer it
- Eliciting strength of preference (SoP) data in conjunction with choices can likely improve baseline choice models

Study Data:

- 60 participants deciding between 225 pairs of gambles
- Payoffs ranging from \$3 to \$56.70 with probabilities ranging from 9% to 94%
- Each choice elicits strength of preference rating
- Final dataset also includes attractiveness and buy ratings of each of the 36 individual gambles for each participant

Which of these two	gambles do you prefer?	
🔿 % chance of receivin	g \$	
🔿 % chance of receivin	g \$	
How strong is your	preference for the gamble th	nat you chose?
How strong is your Basically indifferent between the two gambles	preference for the gamble the story preference for my chosen gamble	nat you chose? Extremely strong preference for my chosen gamble

Baseline Model: Cumulative Prospect Theory (CPT) Kahneman and Tversky (1992)

- individual level parameters α , γ , and φ
- Two-part process to arrive at an individual's probability of choosing one option over the other
- lpha and γ drive subjective valuation of both gambles separately
- φ translates difference between the subjective valuations into a probability of choosing the higher valued option

 $\pi(p) = \frac{p^{\gamma}}{\left(p^{\gamma} + (1-p)^{\gamma}\right)^{1/\gamma}}, \quad 0 < \gamma \le 1$ $u(z) = z^{\alpha} \quad \text{(for z>0)}$

Parameters: For a pair of gambles with dollar amounts (z) and probability (p)

- α controls the degree to which people value monetary gains
- γ controls the degree to which the probability weighting function is S-shaped (ie. The degree to which extreme probability outcomes are overweighted and low probability outcomes are underweighted
- arphi controls how strongly differences in subjective values translate to a probability of choosing one option over the other

Initial Fit:

- Implemented Bayesian CPT model in PyStan to fit α , γ , and φ individual parameters for each participant
- Model fit parameters predict gamble choices for each gamble pairing in the dataset with approximately 80% accuracy overall

Model Choice Accuracy by Participant

Accuracy range

Correlation Between Model Probabilities and Participants SoP Ratings

Participant Correlations Betwen Model Choice Probabilities and SoP Ratings

Evidence for Incorporating Strengths of Preferences into the Model

 Very significant correlations across participant strength of preference ratings and model value metrics

Illustrative Examples: Select Participant Correlations

Participant 49: correlation between model subjective value and attractiveness rating = 0.95 study average: 0.70 Participant 19: Correlation between model subjective value and buy rating = 0.97 study average = 0.80

Conclusions and Next Steps

- Significant information contained in SoP ratings, should be able to improve model performance
- Looking to understand best way to incorporate information
- Ex: should SoP ratings be incorporated on individual parameters in the model? or alongside choice probabilities and values?