

The Role of TNF-a Signaling in the Healing of the Knee Following ACL Rupture and Reconstruction

Sinaia Keith Lang, College of Arts & Sciences 2022 Mentor: Nathaniel Dyment, Ph.D., Perelman School of Medicine, McKay Orthopaedic Research Laboratory

Penn Undergraduate Research Mentoring (PURM) Program 2020

Aim 1: Establish the effects of TNF-a signaling on healing following ACL rupture Aim 2: Establish the effects of TNF-a signaling on healing following ACL reconstruction

Background

- Up to 87% of people who rupture their anterior cruciate ligaments (ACL) develop post-traumatic osteoarthritis (PTOA), characterized by chronic pain, stiffness, inflammation, and other progressively-worsening symptoms
- ACL re-injury following ACL
 - reconstruction is becoming increasingly common
- Inflammation is one of the main reasons ACL reconstruction often happens several days to several weeks after rupture
- PTOA inflammation is caused in part by TNF-α, a proinflammatory cytokine that triggers signaling to release cartilage-destroying matrix metalloproteinases (MMPs) from synovial fibroblasts and downregulates transcription factors to inhibit chondrogenesis
- In situations in which TNF-a levels are naturally elevated, recovery after ACL reconstruction is prolonged

Hypothesis

Global Hypothesis: abnormal TNF-a signaling will worsen the ACL healing response

- Elevated TNF-α signaling will accelerate joint degradation by increasing levels of cartilage-destroying MMPs and suppressing chondrogenesis
- Depressed TNF-α signaling will slow healing due to the lack of clearance of the necrotic and grafted tissues to allow for repopulation by healthy tissues

Significance

- Since cases of ACL reinjury following a reconstructive surgery are becoming more frequent, studying how chronic inflammation affects the knee is important
- The mechanisms by which an inflammatory response triggered by TNF-a affects the healing of the ACL post-injury and post-reconstruction are not well understood

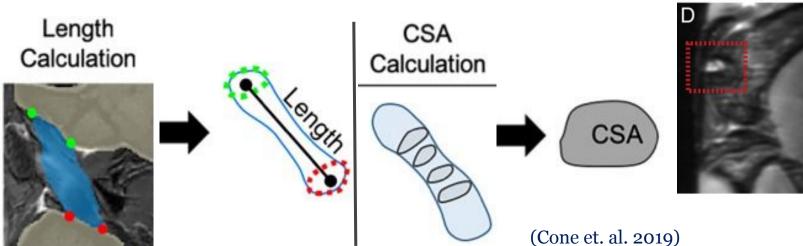
Approach

Three groups of mice (different TNF-a signaling levels)

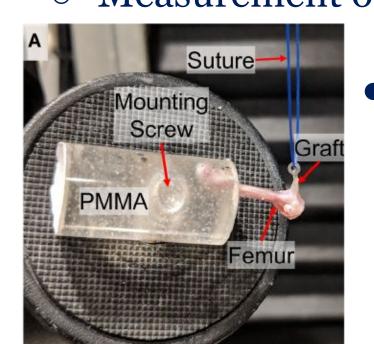
Wildtype	Overactive TNF-a	Depressed TNF-a
	Tace ^{flox} x Ai ₉ x	Sirt1 ^{loxP} x Ai9 x
		Col2CreERT
unmodified mouse	transgenic mouse	transgenic mouse

Four treatment groups (performed at 16 weeks)

ACL rupture, surgical transection	ACL rupture, manual
ACL reconstruction (ACLR)	Control (uninjured)


Measurements

ACL (healthy)

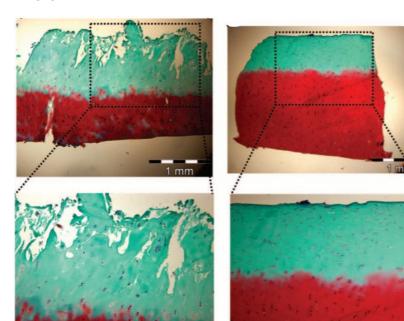

ACL (injured)

(For all groups unless otherwise noted)

- 9.4 T MRI
 - 15 (pre-op) and 20 weeks (post-op)
 - Assessment of articular cartilage →
 - Geometric assessment of the ACL

- Anterior and Posterior Drawer Tests
 - Maximum anterior and posterior displacements following cyclic loading will be recorded →
 - Measurement of knee joint stability

Pullout Tests


- ACL reconstruction group only
- Records maximum loads required for graft failure

(Mak et. al. 2015)

 Will contribute to assessment of tunnel integration quality

Approach, cont.

- Histological Analysis of Cartilage
 - Cryosections stained with Saffarin-O (cartilage) and Fast Green (bone) →
 - Assess cartilage damage with modified Mankin scores

- Entheses ← Cryosections of the graft
- attachments of the ACLR group and ACL entheses of the ACLR and control groups
- \circ Mineral deposition \Rightarrow demeclocycline (bottom)
- \circ Collagen fiber orientation \Rightarrow polarized light (middle)
 - Proteoglycan \Rightarrow toluidine blue (top)

Limitations & Potential Pitfalls

- Cells outside the cartilage also produce TNF- $\alpha \rightarrow$ Solution: Add rheumatoid arthritis drug regimens to the depressed TNF-a protocol to further suppress signaling
- In humans, delays between ACL injury and reconstructive surgery vary → Solution: Run a separate experiment to map out TNF-a levels after injury and after reconstruction

Innovation

Establishing the effects of varying levels of TNF-a signaling in the knee and elucidating its mechanisms after ACL injury could inform future treatments

References

Please click <u>here</u> for a document containing works cited