UPENN Aviary: Latent Space Analysis of Cowbird Song

INTRODUCTION

UPENN AVIARY

- Interdisciplinary lab with biologists and engineers
- Smart Aviary: 10 cameras and 24 microphones

Vision: Location and pose Map trajectories of individual birds

Sound: Detect and classify song Latent space analysis

Behavior: Individual and pairwise Social patterns and hierarchy

BACKGROUND RESEARCH

- Reading groups and deep dives
- Sainburg et al. [2]
- Developed projections for animal and human vocalizations and explored different neural structures to analyze them

OBJECTIVE

To model various vocalizations of individual cowbirds in a 2D latent space and use these projections to computationally analyze complex songs.

Jonathan Cheng

CURF 2020 Research Expo

RESULTS

This project was supported by the TGIA program under CURF. Special thanks to Marc Schmidt, Marc Badger, and the members of UPENN Aviary lab.

CONCLUSIONS

- Cowbird song was able to be projected in a 2D latent space model, with culsterizable elements
- Individual cowbirds' songs showed grouping,
- demonstrating there exists distinct elements to each
- Hands-off computational machine learning without *a priori* assumptions can analyze complex sound data

FUTURE DIRECTIONS

- Song as trajectories
- Clustering algorithms
- Automated song/individual classifier
- Deeper research into the axis of UMAP (using more labeled data)
- Incorporate visual tracking data Markov model of cowbird behaviors and interactions

REFERENCES

- Baillie, Katherine. "Smart Aviary' Poised to Break New Ground in Behavioral Research." Penn Today, 23 July 2019, penntoday.upenn.edu/news/smart-aviary-poised-break-newground-behavioral-research.
- 2. Sainburg, T., M. Thielk, and T. Q. Gentner. 2020. Latent Space Visualizations, Characterizations, and Generation of Diverse Vocal Communication Signals. *bioRxiv*, 870311.
- Ammon Perkes (2020) SegmentSound. https://github.com/aperkes/SegmentSound
 Coenen, Andy. "Understanding UMAP." *PAIR Page Redirection*, paircode.github.io/understanding-umap/.

ACKNOWLEDGEMENTS