Sleep spindles are neural bursts that occur in NREM sleep. They typically last half a second to two seconds and have a signature spindle-like shape on an EEG recording—hence the name sleep spindle. Sleep spindles are thought to be involved in learning and memory, and sleep spindle abnormalities are present in neural disorders such as schizophrenia, autism, and epilepsy.

An Overview of the Detection Software

In the brain, there is electrical activity that an EEG can measure. This electrical signal is composed of waves of different frequencies, and the Fourier Transform can separate the individual frequencies of the electrical signal from each other. Sleep spindles have a peak frequency in the range 10-17 Hz, called the sigma frequency range, and my algorithm uses this fact to classify spindles based on if their peak frequency falls into this range. However, as I developed my algorithm, I found there were events which had a peak frequency in the sigma range, but had peaks of very small magnitude, and so I added the requirement of a minimum peak threshold that would vary between recordings to account for differences in EEG signal strength. For the interested reader, there are two in-depths documentations which I wrote that describe my sleep spindle detection software in more detail called “Preliminary Documentation of Automation of Detection of Sleep Spindles” and “2nd Documentation of Spindle Detection of Automation of Sleep Spindles.”