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Introduction

* Goal: Create a machine learning model that can most
accurately predict lung transplant graft failure or success
based on information about a patient’s health.

* Primary graft dysfunction (PGD) affects 10-25% of lung
transplant patients.

 PGD is a primary cause of post transplant mortality.

* According to a University of Michigan lab, the five-year
survival rate of lung transplantation is 50% and the ten-
year survival rate drops to 20%.

* |ncreased accuracy of survival predictions may lead to
more efficient lung assignments.

Data/Data Preparation

 The dataset was provided by the United Network for Organ
Sharing (UNOS).

* 50 prediction variables were included in the model to predict
“gstatus” (graft failure).

e gstatus is a binary variable, 1 = graft failure and 0 = graft
success.

* Prediction variables were a combination of numerical and
categorical. | transformed categorical variables to binary
numerical variables. (Yes/True = 1, No/False = 0).

Statistical Analysis

* The chi-square test only found a significant relationship
between gstatus and init_llu_flg, init_blu_flg, end rlu_flg and
end blu_flg. These variables indicate lung preference at
registration and at transplant. “rlu” is right lung, “llu” is left
lung and “blu” is both lungs.

* The Wilcoxon Rank-Sum Test found that age is the only
numerical variable that is statistically significant. Significant
meaning that the distribution of age values is significantly
different between graft failure and success.

Predictive Models

* Used a logistic regression, a support vector machine (SVM),
a neural network and a random forest classifier.

* After trying SVM models with different kernels, found that a
polynomial kernel with degree = 2 performed the best.

* Achieved the best performance with the random forest
classifier with 100 trees.

* Used a sequential model with two layers and an output layer
for the neural network.

* | combined the random forest classifier, logistic regression
and the support vector machine to create an ensemble
model.

Discussion and Conclusion

* |initially used principal components analysis (PCA) in hopes of
improving the performance of the models. However, | realized
that when | removed PCA accuracy and precision increased.

* | switched from using the ROC AUC metric to using the PR AUC
metric because PR AUC which improved individual model
scores since the data was heavily imbalanced.

* A limitation of the dataset was that there were a lot of missing
values. The data started with 178,000 rows. However, after
removing all the rows that had NA values within the 50
variables | chose, the number decreased to 941 rows. In the
future | should use imputation to fill in empty values so as to
have more data points to work with.

* In conclusion, the random forest classifier and the ensemble
model were able to predict graft failure most accurately with
an accuracy of 0.79.
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Support Vector Machine:
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Ensemble Model:
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Prediction Variable

P Value
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ventilator_tcr
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prev_tx
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diab
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