Development of control in brain networks over temporal and spatial scales using graph models

Lindsay Smith1, Harang Ju2, & Danielle S. Bassett1,3-6

1Department of Physics & Astronomy, University of Pennsylvania; 2Neuroscience Graduate Group, University of Pennsylvania; 3Department of Bioengineering, University of Pennsylvania; 4Department of Electrical & Systems Engineering, University of Pennsylvania; 5Department of Neurology, University of Pennsylvania; 6Department of Psychiatry, University of Pennsylvania

Summary

Motivation: In a brain network, brain regions vary in their ability to control the state of the network. Additionally, brain regions differ in their control of modes of activity propagation.

Questions

• How does network structure affect these relations?
• How do different timescales affect these measures?
• Are these results unique to the brain’s topology?

Methods

We used a network representation of white matter connectivity from diffusion imaging data of 882 youth ages 8–22. We used a simplified noise-free linear discrete-time and time-invariant equation of state:

\[x(t+1) = Ax(t) + B_k u_k(t) \]

Then, we measured the average controllability using the trace of the controllability Gramian:

\[W_K = \sum_{t=0}^{\infty} A^T B_k B_k^T A^T \text{Trace}(W_K) \]

Modal controllability was calculated using the eigenvectors and values from the adjacency matrix A:

\[\phi_i = \sum_j (1 - \xi_j^2(A)) |v_{ij}|^2 \]

For control of synchrony in the oscillatory dynamics of brain networks, or the modes of the system, we calculated the eigenvectors of the Laplacian for each subject, and then averaged the eigenvectors across all subjects:

\[\phi_i^{slow} = \sum_{j} |\xi_j| v_{ij}^2 \quad \phi_i^{fast} = \sum_{j} |\xi_j| v_{ij}^2 \]

Summing over all the large eigenvalues gives the fast modes, and summing over all the small eigenvalues gives the slow modes. Negative eigenvalues correspond to alternating modes while positive eigenvalues correspond to monotone modes.

Changes in Control over Varying Timescales

Average controllability vs. Timescale

Average controllability calculated over discrete timescales converges to the values of average controllability over an infinite time horizon at \(T=10000 \). When comparing average controllability to modal controllability, \(T=500 \) is where the correlation approaches that of the infinite time horizon. For smaller \(T \), average and modal are anticorrelated or not correlated.

Regional Control of System State vs. System Mode

Regions with strong control of fast modes tend to have high average controllability.

Regions with strong control of slow modes tend to have high modal controllability.

References & Acknowledgements

L.S., H.J., and D.S.B. acknowledge support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the ISI Foundation, the Whitaker Foundation, the Defense Advanced Research Projects Agency (DARPA), the National Institutes of Health, the National Science Foundation, the Office of Naval Research, the US Army Research Office, the Office of the Provost (University of Pennsylvania), the Office of Naval Research (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474), the Office of Naval Research, the National Institute of Mental Health (R01-NS099348, R01-NS114152, R01-NS109344), the National Institute of Child Health and Human Development (1R01-NS088891-01), National Institute of Neurological Disorders and Stroke (R01-NS086468 and R01-NS105350), the National Institute of Drug Abuse, the National Institute of Mental Health, the National Institute of Child Health and Human Development (HD102888-01, National Institute of Neurological Disorders and Stroke; R01-NS066589 and the National Science Foundation (BCS-1141992), BCS-1056397, NSF-1047688 and BCS-1042909), we thank Jason Z. Kim for helpful feedback. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.