DeepResection: Automated Segmentation of Postoperative **Epilepsy Imaging**

Problem Statement

- Patients with localized drug-resistant epilepsy (DRE) are candidates for surgery or laser ablation to prevent or reduce seizures
- After surgery, physicians must go through brain MRI scans and manually label resected/ablation tissue for analysis
- ➤ To save time, can we automate this process?

Ramya Muthukrishnan, T. Campbell Arnold, Joel Stein, Kathryn Davis, Brian Litt Center for Neuroengineering and Therapeutics, Departments of Neurology and Bioengineering

Deep Learning

- Segmentation: classifying each pixel in the image as resected or non-
- U-Net model for segmentation (see above)
- > Data augmentation (random flips, rotations, etc.) on training images to

- Final U-Net architecture: EfficientNet B2 encoder backbone
- Dice score: overlap between ground truth and predicted segmentations (0 - 1)
- Averaged dice score across test set scans: 0.78
- Dice score on test set by slice: 0.83
- Model validated on preoperative controls

3.

Applications

Can be used to quantify hippocampal remnant, which has been linked to important factors such as seizure reduction and neuropsychological behavior

Other potential applications include

- a neurosurgery tool to assess accuracy of resection
- \succ a research tool to account for resections when applying atlases to postoperative imaging

Future Directions

- Package the tool into an open-source codebase that clinicians and researchers can use
- Generalize model to include laser ablations and non-temporal lobe epilepsies

References

- Ronneberger O et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2015; 9531: 234-241.
- 2. Erickson BJ, Cai J. Magician's Corner: 4. Image Segmentation with U-Net. Radiology: Artificial Intelligence. 2020; 2(1): e190161.
 - Mikolajczyk A, Grochowski M. Data Augmentation for Improving Deep Learning in Image Classification Problem. International Interdisciplinary PhD Workshop. 2018; 117-122.