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Background Strategies for Analyzing Time Series Data
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* Time Series data is a collection of observed measurements that maintain a sequential order « Segmentation: By segmenting data, we make can analyze hidden properties of the underlying data. A well known example of this is sound
* Ex:Audio, EEG, Text, etc. R R ) data, where the time series can be segmented by different voices or sounds. Through segmentation, our training time drastically decreases
as the model is only searching for local features in each discrete window instead of both local and global features.
* Types of segmentation:
* Sliding Window: Set of default events are created and are a specific discrete length
* Rolling Window: A window of a set value moves one increment along the time series (more time required
than sliding window)

A major problem regarding time series data is time series classification (TSC). TSC seeks to
predict a certain class of a new time series based on models training data.

* With regards to this PURM project, we specifically sought to classify EEG data which can be
used to identify certain micro sleep events

Fig. 1. Segmentatibﬁ is the process of splitting a

time series into discrete intervals to reveal e Adjusted Sliding Window: Like the normal sliding window, the adjusted sliding window finds the center of

underlying propert|es. of the data. Th|.s example the default events and adjusts the bounds of the window
shows the segmentation of EEG data in sleep "

event classification

* Inthe current literature and online repositories, there are no all-encompassing pipelines that
contain newly developed methods of TSC analysis which is why we decided to develop one

* Image Classification Techniques: Since computer vision and image classification techniques have been around longer and studied more than

* Specific attributes of time series data regular time series techniques, it is useful to change the one dimensional time data to a two-dimensional image that can be analyzed. 10
* Seasonality: Variations that repeats itself over time o - e « Gramian Angular Fields: A GAF essentially scales the data, converts it to polar, and then constructs a gram matrix using the
 Trend: Gradual upward or downward movements - Re inner product. The density of the gram matrix is plotted which can be analyzed using image classification techniques o d . E ol . . 0 50 100 150 200 20
 Level: Average value or moving average value of the series e L 7 a\e o * Markov Transition Fields: More complicated than a GAF, a MTF transforms 1D time series data into a Markov transition o _ _
» Stationarity: Time series whose mean and variance are constant over time - g matrix by assigning a probability along the temporal order F'g' 4. These are exampl.es Of? Mar!<ov Transition Field (Ieft? and a Gr;f\mlan Angu'IeTr F'_eld
LT N lele 2 (right). Both are a two dimensional image that can be used in regular image classification
* Deep learning takes in input data and extracts features automatically in order to classify the o \% * Convolutional Neural Networks: CNNs extract high level features by applying multiple filters in convolutional and pooling layers to capture models.
data set, unlike regular machine learning where feature extraction is manually completed. 28nasr Qaxzexny)  (2x1zxn) 5 '9 spatial and temporal dependencies in images.
Recently, convolutional neural networks are being utilized in order to analyze TS data *  You Only Look Once (YOLO): Applies a single neural network (NN) to an image, divides the image into regions and then roirguns @) @ @ PN
Fig. 2. ACNN is a deep learning method that predicts probabilities of bounding boxes. Each bounding box represents an area with an associated probability of an object _y “fmf'
extracts features through multiple convolutions being in said box .-;-’-;‘ Weights e i 5 PN Size (9] =3
* GOAL: Develop an all-encompassing pipeline (AutoMLPipe-TSC) that preprocesses univariate and pooling layers. During classification, the data * Single Shot MultiBox Detector (SSD): A grid is placed over the image and each individual cell is responsible for classifying If == . -:;LI} € HNumber
and multivariate time series data in order to apply recent contributions in computer vision is flattened, and a loss function is applied to an objectisin it or not. Then an anchor box bounds the cells that contain the object. Sienple Uits i_j :# :“J 'i.ﬁ ”:‘, ik, ".:.EE‘:(:S—IH;N Il
technology such as YOLO and SSD to classify said data. optimize the model  Tiled CNN: A CNN that uses a tiled pattern of weights where neighboring units are pooled over to classify objects in the t'.;'lultilc- -4 I".I1.1|:-::-
mage. -~ 9000000 0000000
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Fig. 3. YOLO model example. YOLO is extremely computationally

" " h . efficient since the model only runs once. The only struggle with . : : : : . :
( : e - — Fig. 5. In a tiled CNN, weights are given to each tile to maintain the spatial data of the
U rrent Res ealrcC h /PI p el INES — " \ YOLO is the difficulty in detecting small objects/events, unlike . 8 . 5 .g P
; L — N L . ssD which is s| o image. Similar to regular CNNs, tiled CNNs have a small number of learned parameters for
K L 1‘ D “ AUX l a , which is slower but more accurate. increased scalability
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» Sktime: Sktime is a unified framework for time series analysis in classification and forecasting. This was a major framework utilized ) S e 4
in the pipeline since other advanced models were based on it.

« TapNet: TapNet is a multivariate time series classification tool that can deal with high amounts of data as an attentional prototype " - " "
pNet: Tap : prototyp Analysis & Preliminary Results Conclusions

network.
* InceptionTime: Extremely effective at handling large time series data sets since it utilizes the InceptionTime CNN which Conclusion
outperforms the traditional HIVE-COTE method. * AutoMLPipe-TSCis an extension of the already built AutoMLPipe-BC which handles  Based on the preliminary data set results, the pipeline is able to handle
general binary classification 2 unsegmented data and apply image classification techniques
 MINIROCKET: MR is a fast deterministic transform for TSC by utilizing random CNNs to train a linear classifier. * Future work would include a method to manually segment the data set using
* To build the basis of the pipeline, | utilized the Sktime unified framework since it methods such as rolling window or adjusted sliding window
« Time Warping Invariant Echo State Networks: Echo State Networks are an alternative to CNNs in time series analysis but have already has prebuilt classification techniques that can be applied to time series sets |
usually been too computationally complex. However this research shows how ESNs are more accurate than traditional manual
feature learning methods. * HIVE-COTE was used as the baseline algorithm all future algorithms would be FUTURE WORK

compared to since it is the oldest/most popular TSC algorithm * Develop an addition to the pipeline that handles vision transformers, a new

-l N\ 1000 Sollution _ - . o method in image classification which is faster than most traditional CNNs
‘ Depth ‘ 0~AMM * Besides YOLO, | have started the implementation of InceptionTime into * Regarding Penn Medicine, AutoMLPipe-TSC can be applied to handle medical data

25 1 MWMWEW Aut.oMLPipe-TSC because of its general breadth when handling different time such as EEG data
-251 | | | | series sets &l

* For example, it would be interesting to explore how the pipeline classifies sleep
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* This pipeline is a combination of all the current cutting-edge method in time series
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