Association of COVID-19 and Sudden Cardiac Arrest: COVID-19 and Cardiovascular Health Impact on Youth Athlete Return to Play Chinyere Anucha (COL 2023), Lindsey Flanagan, MPH, Victoria L Vetter, M.D., MPH, The Children's Hospital of Philadelphia Children's Hospital of Philadelphia Pediatric Cardiology at Perelman School of Medicine at the University of Pennsylvania and Penn Undergraduate Research Mentorship Program, University of Pennsylvania

Background

- COVID-19 infection ranges from asymptomatic to severely symptomatic cases and death
- COVID-19 infection has significant effects on cardiovascular health.
- COVID-19 is particularly serious for those with underlying pre-existing conditions
- ✓ Diabetes, kidney disease/failure
- Cardiac conditions (hypertension, cardiomyopathy, coronary artery disease arrhythmias)
- A sudden cardiac arrest (SCA) occurs when the heart stops suddenly without warning and immediately loses electrical function. It is a major public health concern responsible for over 380,000 deaths per year.

Research Questions

- Is there an association between COVID-19 and sudden cardiac arrest?
- How does COVID-19 infection impact young athletes?
- What are the return to play guidelines for safe exercise after COVID?

COVID-19 and Cardiovascular Health

- COVID infection is more severe and less well tolerated in the presence of preexisting heart conditions
- COVID-19 can present with acute cardiovascular effects such as shock, heart failure, and arrhythmias (atrial fibrillation, ventricular tachycardia, and ventricular fibrillation).¹
- COVID-19 infection causes **myocarditis** with inflammation of the heart in up to 27.8% in a report from China.²
- ✓ Myocarditis appears 10-15 days following onset of symptoms and can cause heart damage and sudden cardiac arrest (SCA).³
- Other cardiovascular effects include vascular inflammation with venous thromboembolism and coagulopathies (clots, pulmonary emboli).⁴
- COVID-19 infection can lead to respiratory failure stressing the heart, including pneumonia, ventilator dependence, as well the need of an ECMO machine (heart-lung)
- COVID-19 infection can lead to secondary bacterial infections.

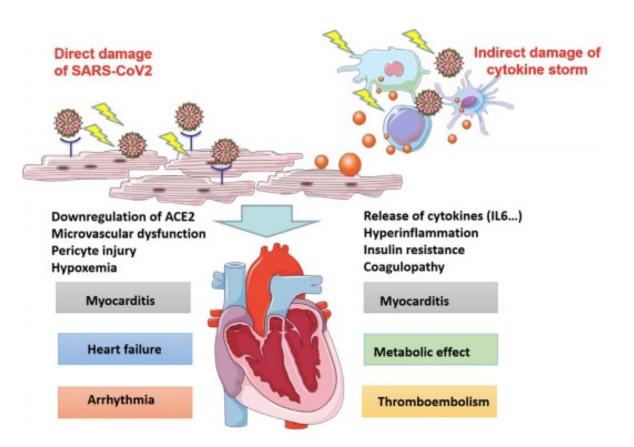


Figure 1. Direct (disfunction at cellular level) and indirect (immune system response) effects of COVID-19 infection on the heart

Risk Factors and Outcomes

- etc.)
- visited regularly)
- Absence of preventive care
- ✓ Age, race/ethnicity, gender
- ✓ Other social determinants of health (SDOH) such as education, socioeconomic status/income, and neighborhood
- ✓ Case fatality higher by race/ethnicity: Pacific Islanders, Latinos, Indigenous and Black Americans; Gender: men; SDOH: Education: lower education levels, lower income, and living in crowded and/or urban areas
- \checkmark Delay in seeking care for symptoms with delayed diagnoses
- ✓ Lack of access or hesitancy to visit medical providers with high COVID prevalence in the community
- ✓ Those with pre-existing cardiac conditions or cardiac involvement from COVID have more severe outcomes.
- Mortality (survival after acute infection)
- 1.7% case-fatality ratio in the United States (as reported by Johns Hopkins)⁵ Morbidity
- Pneumonia and residual lung disease Hypercoagulability (clots: deep venous thrombosis and pulmonary
- emboli/PE)
- Mental confusion
- Exercise intolerance and chronic fatigue
- Long-haul or long COVID: persistent symptoms after recovering from acute COVID-19. This includes fatigue, muscle weakness, trouble sleeping, anxiety, memory issues, and depression 6 months post recovery.⁶ Patients with severe illness in the hospital had increased risk of residual lung
- impairment.⁷

COVID-19 and Sudden Cardiac Arrest

- Studies show an increase in out of hospital cardiac arrest (OHCA) during the pandemic
- A study performed in Italy found a strong correlation between out-of-hospital cardiac arrests in 2019 and 2020 and incidence of COVID-19 cases in the region.⁸
- US studies show an increase in sudden cardiac arrests (88.5 ± 64.1 vs. 69.7 ± 49.8 per million residents; P < 0.01), especially in communities more severely affected by the virus.⁹
- ✓ The Houston Fire Department reported a **45% increase** in sudden cardiac death.¹⁰
- ✓ In Philadelphia, **1.3% of patients admitted for COVID had a sudden** cardiac arrest, all of whom were in intensive care.¹¹

COVID-19 Impact on CPR

- Cardiopulmonary resuscitation (CPR) and use of an automated external defibrillator (AED) increases chances of survival after a SCA.
- Philadelphia is a city with low bystander CPR pre-pandemic, around 20%. • There is a "culture of fear" associated with the pandemic, with bystanders less willing to perform CPR because of fear of contracting COVID.¹²
- This can be combatted through education about safe CPR and AED use. • Due to overstretched resources, normal responses for SCA may not be readily
- available during the pandemic, increasing the risk of SCD

Several **risk factors** contribute to adverse outcomes from COVID-19 infection: ✓ Underlying state of health (cancer, chronic kidney disease, diabetes, obesity,

 \checkmark Lack of access to routine quality care (having a primary care doctor that is

Vaccination Impact on the Heart

- Vaccinations can mitigate this pandemic by preventing severe illness and death.13
- There are reported cases of myocarditis and pericarditis following mRNA vaccinations (Pfizer/BioNTech and Moderna) several days (3-10) after vaccination, primarily after the second dose more often in males \geq 16 years.¹⁴
- All patients responded to medications and treatments and recovered quickly.
- Vaccination is still recommended because the risk of cardiac complications of COVID-19 far outweighs the risk from vaccination.

Return to Play

- SCD is known to occur in athletes, raising the concern of whether COVID infection, known to affect the heart, could increase the risk of SCA in athletes.
- SCA is responsible for 75% of young athlete deaths in high schools. ✓ 1 in 80,000 high school athletes and 1 in 50,000 college athletes have a SCA/D per year
- \checkmark Higher incidence of SCA in male and black athletes
- ✓ Highest risks in male basketball and football players Exercising with myocarditis could trigger abnormal heart rhythms and lead to
- Athletes should allow the heart inflammation to heal as to prevent further stressing the heart and triggering abnormal rhythms and SCA. • There are current return to play guidelines from the American Medical Society for Sports Medicine (AMSSM) and an expert consensus
- statement from JACC: Cardiovascular Imaging:¹⁵
- Begin with a focused medical history and examination using a targeted approach depending on whether the athlete is symptomatic or asymptomatic.
- Cardiovascular testing may not be necessary for asymptomatic or mildly
 The association of COVID-19 infection with sudden cardiac symptomatic athletes arrest is a serious risk of the virus.
- ✓ Graduated return to play protocol recommended (see Figure 2)
- **Recommendations and considerations for return to play (Figure 3):** ✓ Comparison with previous ECGs if available: Look for changes in ST
- Measures that are normally taken to prevent a sudden cardiac segments and T waves. death from a sudden arrest, such as proper CPR training and ✓ Assess for subclinical myocardial injury using blood tests (high sensitivity AED access, should continue, and take greater precedence troponin) ✓ TTE (transthoracic echocardiography) imaging for athletes with acute during this pandemic.
- symptoms
- This includes increased scrutiny when clearing young athletes ✓ CMR (cardiac magnetic resonance) imaging as a next step in identifying for return to play. pericardial enhancement or myocarditis
- Health practitioners should consider the potential health care and societal costs and risks of testing and avoid what is unnecessary including:¹⁶ ✓ Financial costs
- ✓ Strain on healthcare systems with limited resources in areas with high COVID-19 infection rates
- \checkmark Access to testing
- \checkmark Harm to athletes due to extensive use of imaging
- Note that there should not be a one-size-fits-all approach, but one chosen depending on athletic discipline, setting, and available resources.

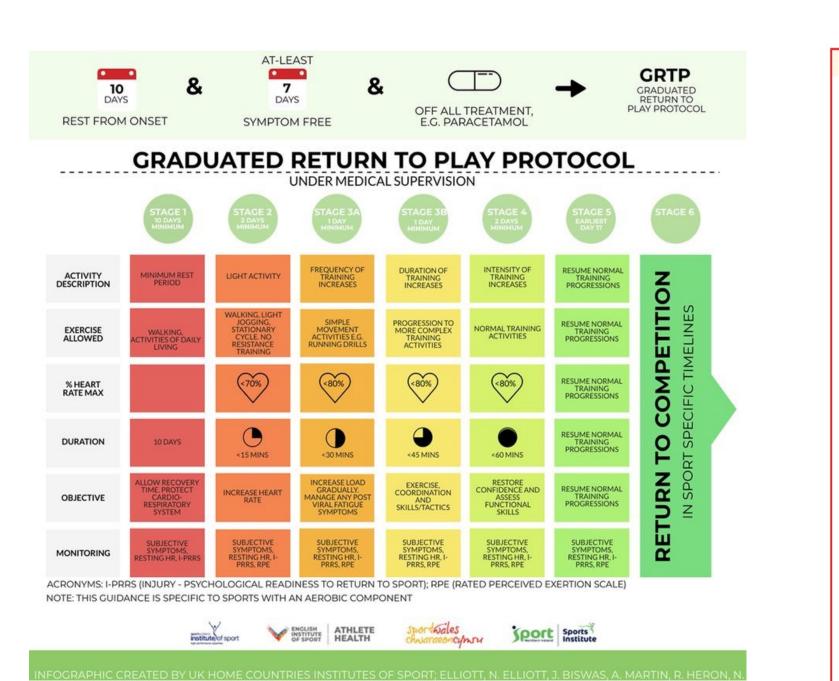
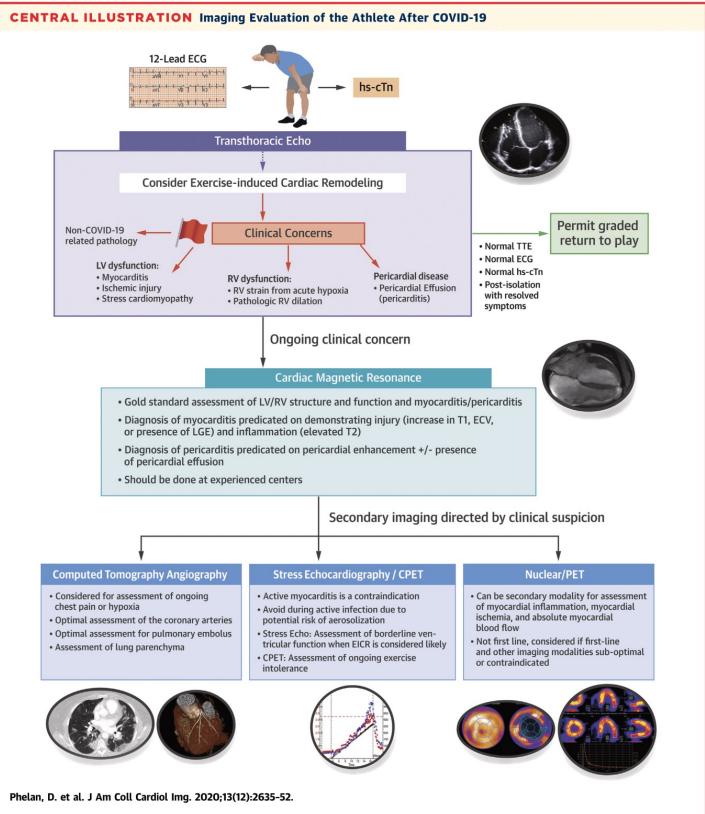


Figure 2. Graduated return to play protocol.


Conclusion and Future Considerations

 This is a cause for concern for health practitioners and cardiologists.

- There should be a greater focus on prevention and the importance of vaccination to control and mitigate the spread of COVID-19.
- Other mitigation factors, such as masking and social distancing, when possible, should be considered.
- Return to play guidelines can be used for all athletes.
- Following the conclusion of the Olympics, researchers should investigate COVID infection rates and vaccinations during the games and develop improved recommendations for athletic participation.
- Researchers should also carefully evaluate new data regarding booster shots and how new variants affect recommendations.

e extracellular volume: EICR = exercise-induced cardiac remodeling: hs-cTn = high-sensitivity cardiac troponin; LGE = late gade

Figure 3. Imaging evaluation.

Figure 1: Chang WT, Toh HS et al. Cardiac Involvement of COVID-19: A Comprehensive Review. Am J Med Sci. 202 Jan;361(1):14-22. doi: 10.1016/j.amjms.2020.10.002. Epub 2020 Oct 6. PMID: 33187633; PMCID: PMC7536131.

Figure 2: Elliott N. Martin R et al. Infographic. Graduated return to play guidance following COVID-19 infection. British Journal of Sports Medicine 2020:54:1174-1175. Figure 3: Phelan D, Kim JH et al. Screening of Potential Cardiac Involvement in Competitive Athletes Recovering From COVID 19: An Expert Consensus Statement. JACC Cardiovasc Imaging. 2020 Dec;13(12):2635-2652. doi: 10.1016/j.jcmg.2020.10.005. Epub 2020 Oct 28. PMID: 33303102; PMCID: PMC7598679

1. Guzik TJ, Mohiddin SA et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and reatment options. Cardiovasc Res. 2020 Aug 1;116(10):1666-1687. doi: 10.1093/cvr/cvaa106. PMID: 32352535; PMCID:

PMC7197627 2. Yadav R, Bansal R et al. COVID-19 and sudden cardiac death: A new potential risk. Indian Heart J. 2020 Sep-Oct;72(5):333-336, doi: 10.1016/i.ihi.2020.10.001, Epub 2020 Oct 17, PMID: 33189190; PMCID: PMC7568175

- 3. Guzik TJ, Mohiddin SA et al.
- 4. Chang WT, Toh HS et al. 5. Mortality Analyses, Johns Hopkins University, 26 Aug 2021, https://coronavirus.ihu.edu/data/mortality

6-7. Huang C, Huang L et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet

2021 Jan 16:397(10270):220-232. doi: 10.1016/S0140-6736(20)32656-8. Epub 2021 Jan 8. PMID: 33428867: PMCID: PMC7833295 8. Baldi E, Sechi GM et al. COVID-19 kills at home: the close relationship between the epidemic and the increase of out-of-

hospital cardiac arrests. Eur Heart J. 2020 Jun 1;41(32):3045-3054. doi: 10.1093/eurhearti/ehaa508. PMID: 32562486: PMCID: PMC7337787 9. Kovach CP, Perman SM. Impact of the COVID-19 pandemic on cardiac arrest systems of care. Curr Opin Crit Care. 2021 Jun

1;27(3):239-245. doi: 10.1097/MCC.00000000000817. PMID: 33783396; PMCID: PMC8085036. 10-11. Yadav R, Bansal R et al.

12. Kovach CP. Perman SM

13. The Possibility of COVID-19 after Vaccination: Breakthrough Infections. Centers for Disease Control and Prevention. 23 Aug 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness/why-measure-effectiveness/breakthrough-cases.htm 14. Clinical Considerations: Myocarditis and Pericarditis after Receipt of mRNA COVID-19 Vaccines Among Adolescents and Young Adults. Centers for Disease Control and Prevention. 23 Aug 2021. https://www.cdc.gov/vaccines/covid-19/clinicalconsiderations/mvocarditis.htm

15. Diamond, AB. DO*; Narducci, DM et al. Interim Guidance on the Preparticipation Physical Examination for Athletes During the SARS-CoV-2 Pandemic, Clinical Journal of Sport Medicine: January 2021 - Volume 31 - Issue 1 - p 1-6 doi 10.1097/JSM.000000000088

16. Phelan D, Kim JH et al.

Supported by a grant from PURM