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Accelerating Few-Shot Learning Via Hardware

Few-Shot Learning — A Type of Meta-Learning

What is Meta-Learning?

Motivation
§ Humans learn new concepts with very little supervision
§ A child can generalize the concept of “giraffe” from a few 

pictures in a book
§ But our best deep learning systems need hundreds or 

thousands of examples

§ “Learning to learn” — machine learning (ML) models that can 
learn new skills, adapt to new environments rapidly with few 
training examples

§ More closely emulates human intelligence 

§ Model learns a class from few (< 10) labeled examples
§ ”Lifelong learning” models — continuously learn from small 

episodes of data containing various unseen classes

§ Goal is to improve energy efficiency, space requirements, and 
runtime without compromising inference accuracy

Methodology
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Convolutional Neural Network (CNN) Analog Content-Addressable Memory (ACAM)

Embedding QuantizationMatching Network AlgorithmEmbedding Function

§ 4 convolutional layers
§ 64-dimensional, real-valued 

output embedding

1. Given: Support set 𝑆 =
𝑥!, 𝑦! , … , 𝑥" , 𝑦" , Query image 𝑄 =
𝑥# , 𝑦# , Embedding function 𝑓

2. Compute: Attention kernel 𝑎 𝑥# , 𝑥$ using:

For all 𝑖 = 1,… , 𝑛:
E𝑦# = 𝑎𝑟𝑔𝑚𝑎𝑥%! 𝑎 𝑥# , 𝑥$
Backpropagate 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠(𝑦# , E𝑦#)

§ ACAM stores real 
values in intervals

§ 5 quantization intervals 
yields optimal inference 
accuracy

Training / Validation

§ Inference accuracy for GPU+cosine, TCAM+LSH, 
and ACAM+Hamming are very similar

ACAM Accuracy vs GPU, TCAM § Few-shot learning with ACAM 
requires less energy, space, 
and search time than 
alternative (GPU, TCAM) 
implementations with 
negligible compromise on 
inference accuracy

§ Future steps — matching 
network algorithm is not 
optimal for few-shot learning, 
implement improved 
approach


