
An Automated Deep Learning Analysis Pipeline for Classification in Tabular Biomedical Data
Keshav Ramji, Ryan J. Urbanowicz

Background

Acknowledgements Lab/Research Links
This work was supported by the University of
Pennsylvania Center for Undergraduate Research and
Fellowships (CURF) as part of the PURM program.

Model Selection for Non-Tabular Methods

Deep Learning Introduction and Tabular Methods

Analysis & Results on Benchmark Data

• Machine Learning strategies have become an integral part of the biomedical informatics domain to better model, forecast, and classify complex
interactions in large datasets.

• For classification tasks on such datasets, researchers in the biomedical field have often opted to use more traditional machine learning techniques
(Random Forest, Support Vector Machines, Logistic Regression, etc.), as they are inherently more explainable in terms of the methods through which the
classification is generated.

• More recently, however, the fast-growing field of deep learning (DL) has gained traction, particularly in the ability to accommodate a variety of tasks
(binary classification, multiclass classification, multilabel classification, regression, etc.) and data modalities (image, text, tabular, speech, etc.).

• Furthermore, these models train very well with large volumes of data and can often result in higher accuracies than traditional methods.

• While deep learning models are notably less interpretable (often considered “black box” methods), the higher accuracies presented by these models
merits further exploration, particularly in the biomedical informatics domain where interpretability has long been prized.

www.med.upenn.edu/urbslab/

www.ryanurbanowicz.com

Code Availability
github.com/UrbsLab

github.com/UrbsLab/AutoMLPIpe-DL

References
1. Urbanowicz, Ryan J., et. al. “A Rigorous Machine Learning Analysis Pipeline for Biomedical Binary Classification:

Application in Pancreatic Cancer Nested Case-control Studies with Implications for Bias Assessments”, arXiv:
2008.12829 [cs.LG]

2. Skorch-Dev. (n.d.). Skorch-Dev/Skorch: A scikit-learn compatible neural network library that WRAPS PYTORCH.
GitHub. https://github.com/skorch-dev/skorch.

3. Arik, Sercan O. and Pfister, Tomas. “TabNet: Attentive Interpretable Tabular Learning”, arXiv: 1908.07442 [cs.LG]
4. Dreamquark-Ai. (n.d.). Dreamquark-Ai/Tabnet: PyTorch implementation Of tabnet paper :

Https://arxiv.org/pdf/1908.07442.pdf. GitHub. https://github.com/dreamquark-ai/tabnet.
5. Y. LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition,", Neural Computation, vol. 1, no. 4,

pp. 541-551, Dec. 1989, doi: 10.1162/neco.1989.1.4.541.
6. Sharma, A., et al. “DeepInsight: A methodology to transform a non-image data to an image for convolution neural

network architecture” Sci Rep 9, 11399 (2019). https://doi.org/10.1038/s41598-019-47765-6
7. Saha, S. (2018, December 17). A comprehensive guide to convolutional neural networks - the eli5 way. Medium.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b11
64a53.

8. Ujjwalkarn. (2017, May 29). An intuitive explanation of convolutional neural networks. the data science blog.
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/.

9. Max-pooling / pooling. Max-pooling / Pooling - Computer Science Wiki. (n.d.).
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling.

10. Hinton, G. E. (2002). “Training products of experts by minimizing contrastive divergence”. Neural computation,
14(8), 1771-1800.

11. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation,
18(7), 1527-1554.

12. Albertbup. (n.d.). Albertbup/Deep-Belief-Network: A Python implementation of deep belief networks built upon
numpy and TensorFlow with scikit-learn compatibility. GitHub. https://github.com/albertbup/deep-belief-network.

13. Restricted boltzmann machines using c#. James D. McCaffrey. (2017, June 2).
https://jamesmccaffrey.wordpress.com/2017/06/02/restricted-boltzmann-machines-using-c/.

14. Deep belief network. Deep Belief Network Introduction. (n.d.).
http://www.ashokrahulgade.com/skills/DL/DBN/Introduction.html.

Conclusions

Deep Neural Network Background:
• The foundational model for deep learning is the perceptron neural network.
• The multilayer perceptron (MLP) is a more complex form of the perceptron with hidden layers between the input and output layers (Fig. 1)
• In a feed-forward neural network such as the MLP, inputs are propagated through the network from neuron to neuron, with learned weights

and biases used to select the output in each layer.
• Each neuron consists of a linear function followed by a non-linear activation function such as Rectified Linear Unit (ReLU), Sigmoid, or

Hyperbolic Tangent (tanh), to generate the output of the neuron.
• The eventual task in this supervised learning approach is to minimize loss, which is calculated by a cost function comparing the predicted

output to the actual output as identified in the data.
• Loss minimization is typically done with gradient descent or stochastic gradient descent, in which the gradient of the loss function is

iteratively computed to update the model.
• The network learns in gradient descent through backpropagation, in which a chain rule of partial derivatives is used to calculate the gradient

of the total loss with respect to the weights, which is then propagated backwards through the network for parameter update (Fig. 2)

Implementation Plan:
• The ANN in AutoMLPipe-BC was developed using the MLPClassifier method in scikit-learn. However, as PyTorch and Tensorflow are the

libraries of choice for deep learning research, it would be beneficial to introduce PyTorch in the pipeline for deep neural networks (ANN with
many hidden layers).

• We plan to develop the deep learning methods for AutoMLPipe-DL using SKORCH, a scikit-learn wrapper for PyTorch models2, or where
available, a scikit-learn compatible implementation for the models.

• AutoMLPipe-BC utilizes many scikit-learn evaluation metrics in the ML modeling and the statistical analysis sections, so by ensuring
that the model is a scikit-learn object, we can maintain the usage of these metrics.

Deep Learning for Tabular Data:
• While gradient boosting decision trees are widely popular for tabular data, recent deep learning models such as TabNet3 have shown

promising results
• The TabNet model architecture takes inspiration from decision trees, using sequential attention to perform a feature selection

procedure at each decision step through a learnable mask for the prediction task.
• The TabNet implementation4 could be trained using either a supervised or semi-supervised approach, where the unsupervised

pre-trainer for representation learning is followed by a supervised fine-tuner through a masked self-supervision procedure (Fig. 3)
• Aside from tabular model architectures, we also consider models designed

for other modalities - specifically, we explore Convolutional Neural Network5
(CNN) architectures designed for image classification tasks.

• In order to use CNNs in AutoMLPipe-DL, we would need prepare the input in
the form of images for the described model architectures.

• CNNs have traditionally not been used on tabular data due to simple
Python Image Library (PIL) image transformations not considering
relationships between features, which is an important component of
training CNNs

• We use DeepInsight6, which applies the t-distributed stochastic
neighbor embedding (t-SNE) method for feature extraction for
dimensionality reduction and performs an image transformation on
the scaled data

• We then use the transformed image data, which considers the feature
locations and values in the process of mapping cartesian coordinates
to pixels, as input for the CNNs.

• In order to construct a CNN as part of AutoMLPipe-DL, we will use SKORCH
(as was done with the MLP) to implement the model in PyTorch

• The convolutional layer involves sliding a filter matrix over the image (which
itself is a matrix of scaled values) and iteratively computing a Frobenius
inner product to generate the feature map of the image.

• The max pooling layer is a method of spatial dimensionality reduction
wherein clusters of the feature map are condensed by using the maximum
value within the cluster (size of cluster determined by stride)

• For this implementation, we consider a “unit” to consist of a convolutional
layer followed by a max pooling layer, and conducted the hyperparameter
search to determine the number of these “units” to be included in the
architecture

Table 1: Results of AutoMLPipe-DL on Hepatocellular Carcinoma (HCC) datasets from UC
Irvine Machine Learning Repository.

Fig 1. Illustration of multilayer
perceptron model with two
hidden layers and a multiclass
(3 class) classification task.

Fig 2. Illustration of
backpropagation in a neural
network, gradient calculation,
and parameter update
through chain rule of partial
derivatives.

Fig 3. Figure demonstrating
the masked self-supervised
approach proposed in the
TabNet3 (image from paper),
which improves the encoder
for the supervised
fine-tuning, particularly for
smaller datasets.

Fig 4. Convolutional
Neural Network
architecture7 (from
Toward Data Science).

Fig 5. Schematic6 of DeepInsight image transformation procedure
(from DeepInsight paper). .

Fig 6. Visual depiction8 of the
convolutional layer in CNN.

Fig 7. Visual depiction9 of the
max pooling layer in CNN.

• Successfully implemented the AutoMLPipe-DL pipeline with 12 deep learning
models (MLPClassifier, SKORCH MLP, CNN, Supervised TabNet, Semi-Supervised
TabNet, RBM with 6 different downstream classifiers, and DBN).

• Achieved promising results on 8 DL models as compared to SOTA techniques in
AutoMLPipe-BC using UC Irvine Hepatocellular Carcinoma data.

• This DL pipeline provides an interesting research opportunity to explore deep
learning models on larger and more complex biomedical datasets.

Future Work:
• Continue testing and debugging of SKORCH models to integrate them in the

pipeline and apply Optuna hyperparameter optimization for all the models.
• Expand upon the CNN model implementation to incorporate other notable CNN

architectures, including VGGNet-19, AlexNet, ResNet, Inception-v4, and DenseNet.
• Implement the TabTransformer, an effective self-attention model which requires

creating an implementation using SKORCH.
• Complete the minimal changes necessary to adapt AutoMLPipe-DL to multiclass

classification tasks, and examine its performance on other biomedical datasets.

• Another approach we explore is probabilistic models - particularly, Restricted Boltzmann
Machines (RBM).

• RBM are a bipartite, undirected probabilistic graphical model, which learns a joint probability
distribution over the feature set and have been found to be effective as pre-trainer models,
particularly in feature extraction as representation learners

• This is a form of recurrent neural networks (RNN) that is stochastic in nature.
• RBMs are trained using the contrastive divergence10 algorithm, which uses gradient

descent and applies Gibbs sampling (a Markov Chain Monte-Carlo randomized
algorithm for Bayesian inference) to approximate the distribution over the features.

• We fit the training data using the scikit-learn BernoulliRBM method in conjunction with a
number of state-of-the-art (SOTA) ML models as downstream classifiers.

• Deep Belief Networks11 are a directed graphical model that can be constructed by stacking
multiple RBMs such that the hidden layer of the previous RBM is the visible layer of the next

• Each RBM is trained sequentially using contrastive divergence and the resulting output is
passed into the next RBM - it is trained greedily, and is quite effective

• We use an open-source implementation12 which pairs the DBN with the softmax classifier

Fig 9. Illustration14
of deep belief
network with a
directed sigmoid
belief network and
undirected RBM.

Fig 8. Restricted
boltzmann machines
as a binary valued
undirected bipartite
graph12 with a visible
and a hidden layer.

• We test the functionality of the implemented deep learning algorithms on
the UC Irvine Hepatocellular Carcinoma (HCC) dataset (Table 1)

• We report the area under the receiver operating characteristic curve
(AUC-ROC) as the most relevant accuracy metric.

• We run both the AutoMLPipe-DL and AutoMLPipe-BC pipelines to compare
the efficacy of our newly implemented models

• Given deep learning models often perform better with larger data, running
the pipeline on a larger dataset could potentially yield better results.

• It is worth noting that the models run in AutoMLPipe-DL do not utilize the
Optuna hyperparameter optimization due to limitations in the current
version while those in AutoMLPipe-BC (Table 2) were tuned with Optuna.

• However, the existing DL models already present comparable
performance and we have reason to believe that we can further improve
these models using Optuna, especially the complex TabNet models.

Table 2: Results of AutoMLPipe-BC on the HCC datasets.

Fig 10. Accuracy boxplot
for AutoMLPipe-DL
models for the HCC
dataset with no
covariates included.

Fig 11. Accuracy
boxplot for
AutoMLPipe-BC’s ML
models for the HCC
dataset with no
covariates included.

Fig 1. This schematic1 from the AutoMLPipe-BC paper demonstrates the key stages in the
pipeline, including data pre-processing and cleaning, feature importance and selection,
predictive modeling, and statistical analysis.

GOAL: Expand upon the artificial neural network (ANN) approach in
AutoMLPipe-BC by studying recent deep learning literature to identify the
most viable and efficient approaches for tabular data. Implement the
most promising DL models and compare the results to the
AutoMLPipe-BC models. While we will develop the pipeline with generic
classification tasks in mind, the results will be evaluated on a binary
classification task.

• We will effectively develop a DL modeling pipeline to include the
neural networks of interest, similar to ML Modeling component of the
schematic, while keeping the remainder of the pipeline stages intact.

https://doi.org/10.1038/s41598-019-47765-6
https://github.com/albertbup/deep-belief-network

