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• Machine Learning strategies have become an integral part of the biomedical informatics domain to better model, forecast, and classify complex 
interactions in large datasets.

• For classification tasks on such datasets, researchers in the biomedical field have often opted to use more traditional machine learning techniques 
(Random Forest, Support Vector Machines, Logistic Regression, etc.), as they are inherently more explainable in terms of the methods through which the 
classification is generated.

• More recently, however, the fast-growing field of deep learning (DL) has gained traction, particularly in the ability to accommodate a variety of tasks 
(binary classification, multiclass classification, multilabel classification, regression, etc.) and data modalities (image, text, tabular, speech, etc.).

• Furthermore, these models train very well with large volumes of data and can often result in higher accuracies than traditional methods.

• While deep learning models are notably less interpretable (often considered “black box” methods), the higher accuracies presented by these models 
merits further exploration, particularly in the biomedical informatics domain where interpretability has long been prized.

 

www.med.upenn.edu/urbslab/

www.ryanurbanowicz.com

Code Availability
github.com/UrbsLab

github.com/UrbsLab/AutoMLPIpe-DL
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Conclusions

Deep Neural Network Background:
• The foundational model for deep learning is the perceptron neural network.
• The multilayer perceptron (MLP) is a more complex form of the perceptron with hidden layers between the input and output layers (Fig. 1)
• In a feed-forward neural network such as the MLP, inputs are propagated through the network from neuron to neuron, with learned weights 

and biases used to select the output in each layer.
• Each neuron consists of a linear function followed by a non-linear activation function such as Rectified Linear Unit (ReLU), Sigmoid, or 

Hyperbolic Tangent (tanh), to generate the output of the neuron. 
• The eventual task in this supervised learning approach is to minimize loss, which is calculated by a cost function comparing the predicted 

output to the actual output as identified in the data.
• Loss minimization is typically done with gradient descent or stochastic gradient descent, in which the gradient of the loss function is 

iteratively computed to update the model.
• The network learns in gradient descent through backpropagation, in which a chain rule of partial derivatives is used to calculate the gradient 

of the total loss with respect to the weights, which is then propagated backwards through the network for parameter update (Fig. 2)

Implementation Plan:
• The ANN in AutoMLPipe-BC was developed using the MLPClassifier method in scikit-learn. However, as PyTorch and Tensorflow are the 

libraries of choice for deep learning research, it would be beneficial to introduce PyTorch in the pipeline for deep neural networks (ANN with 
many hidden layers). 

• We plan to develop the deep learning methods for AutoMLPipe-DL using SKORCH, a scikit-learn wrapper for PyTorch models2, or where 
available, a scikit-learn compatible implementation for the models.

• AutoMLPipe-BC utilizes many scikit-learn evaluation metrics in the ML modeling and the statistical analysis sections, so by ensuring 
that the model is a scikit-learn object, we can maintain the usage of these metrics. 

Deep Learning for Tabular Data:
• While gradient boosting decision trees are widely popular for tabular data, recent deep learning models such as TabNet3 have shown 

promising results 
• The TabNet model architecture takes inspiration from decision trees, using sequential attention to perform a feature selection 

procedure at each decision step through a learnable mask for the prediction task.
• The TabNet implementation4 could be trained using either a supervised or semi-supervised approach, where the unsupervised 

pre-trainer for representation learning is followed by a supervised fine-tuner through a masked self-supervision procedure (Fig. 3)
• Aside from tabular model architectures, we also consider models designed 

for other modalities - specifically, we explore Convolutional Neural Network5 
(CNN) architectures designed for image classification tasks.

• In order to use CNNs in AutoMLPipe-DL, we would need prepare the input in 
the form of images for the described model architectures.

• CNNs have traditionally not been used on tabular data due to simple 
Python Image Library (PIL) image transformations not considering 
relationships between features, which is an important component of 
training CNNs

• We use DeepInsight6, which applies the t-distributed stochastic 
neighbor embedding (t-SNE) method for feature extraction for 
dimensionality reduction and performs an image transformation on 
the scaled data

• We then use the transformed image data, which considers the feature 
locations and values in the process of mapping cartesian coordinates 
to pixels, as input for the CNNs.

• In order to construct a CNN as part of AutoMLPipe-DL, we will use SKORCH 
(as was done with the MLP) to implement the model in PyTorch

• The convolutional layer involves sliding a filter matrix over the image (which 
itself is a matrix of scaled values) and iteratively computing a Frobenius 
inner product to generate the feature map of the image.

• The max pooling layer is a method of spatial dimensionality reduction 
wherein clusters of the feature map are condensed by using the maximum 
value within the cluster (size of cluster determined by stride) 

• For this implementation, we consider a “unit” to consist of a convolutional 
layer followed by a max pooling layer, and conducted the hyperparameter 
search to determine the number of these “units” to be included in the 
architecture

Table 1: Results of AutoMLPipe-DL on Hepatocellular Carcinoma (HCC) datasets from UC 
Irvine Machine Learning Repository.

Fig 1. Illustration of multilayer 
perceptron model with two 
hidden layers and a multiclass 
(3 class) classification task. 

Fig 2. Illustration of 
backpropagation in a neural 
network, gradient calculation, 
and parameter update 
through chain rule of partial 
derivatives. 

Fig 3. Figure demonstrating 
the masked self-supervised 
approach proposed in the 
TabNet3 (image from paper), 
which improves the encoder 
for the supervised 
fine-tuning, particularly for 
smaller datasets. 

Fig 4. Convolutional 
Neural Network 
architecture7 (from 
Toward Data Science). 

Fig 5. Schematic6 of DeepInsight image transformation procedure 
(from DeepInsight paper). .

Fig 6. Visual depiction8 of the 
convolutional layer in CNN.

Fig 7. Visual depiction9 of the 
max pooling  layer in CNN.

• Successfully implemented the AutoMLPipe-DL pipeline with 12 deep learning 
models (MLPClassifier, SKORCH MLP, CNN, Supervised TabNet, Semi-Supervised 
TabNet, RBM with 6 different downstream classifiers, and  DBN).

• Achieved promising results on 8 DL models as compared to SOTA techniques in 
AutoMLPipe-BC using UC Irvine Hepatocellular Carcinoma data. 

• This DL pipeline provides an interesting research opportunity to explore deep 
learning models on larger and more complex biomedical datasets. 

Future Work: 
• Continue testing and debugging of SKORCH models to integrate them in the 

pipeline and apply Optuna hyperparameter optimization for all the models.
• Expand upon the CNN model implementation to incorporate other notable CNN 

architectures, including VGGNet-19, AlexNet, ResNet, Inception-v4, and DenseNet.
• Implement the TabTransformer, an effective self-attention model which requires 

creating an implementation using SKORCH.
• Complete the minimal changes necessary to adapt AutoMLPipe-DL to multiclass 

classification tasks, and examine its performance on other biomedical datasets. 

• Another approach we explore is probabilistic models - particularly, Restricted Boltzmann 
Machines (RBM).

• RBM are a bipartite, undirected probabilistic graphical model, which learns a joint probability 
distribution over the feature set and have been found to be effective as pre-trainer models, 
particularly in feature extraction as representation learners

• This is a form of recurrent neural networks (RNN) that is stochastic in nature.
• RBMs are trained using the contrastive divergence10 algorithm, which uses gradient 

descent and applies Gibbs sampling (a Markov Chain Monte-Carlo randomized 
algorithm for Bayesian inference) to approximate the distribution over the features. 

• We fit the training data using the scikit-learn BernoulliRBM method in conjunction with a 
number of state-of-the-art (SOTA) ML models as downstream classifiers.

• Deep Belief Networks11 are a directed graphical model that can be constructed by stacking 
multiple RBMs such that the hidden layer of the previous RBM is the visible layer of the next 

• Each RBM is trained sequentially using contrastive divergence and the resulting output is 
passed into the next RBM - it is trained greedily, and is quite effective

• We use an open-source implementation12 which pairs the DBN with the softmax classifier

Fig 9. Illustration14 
of deep belief 
network with a 
directed sigmoid 
belief network and 
undirected RBM. 

Fig 8. Restricted 
boltzmann machines 
as a binary valued 
undirected bipartite 
graph12 with a visible 
and a hidden layer.

• We test the functionality of the implemented deep learning algorithms on 
the UC Irvine Hepatocellular Carcinoma (HCC) dataset (Table 1) 

• We report the area under the receiver operating characteristic curve 
(AUC-ROC) as the most relevant accuracy metric.

• We run both the AutoMLPipe-DL and AutoMLPipe-BC pipelines to compare 
the efficacy of our newly implemented models

• Given deep learning models often perform better with larger data, running 
the pipeline on a larger dataset could potentially yield better results. 

• It is worth noting that the models run in AutoMLPipe-DL do not utilize the 
Optuna hyperparameter optimization due to limitations in the current 
version while those in AutoMLPipe-BC (Table 2) were tuned with Optuna.

• However, the existing DL models already present comparable 
performance and we have reason to believe that we can further improve 
these models using Optuna, especially the complex TabNet models.

Table 2: Results of AutoMLPipe-BC on the HCC datasets. 

Fig 10. Accuracy boxplot 
for AutoMLPipe-DL 
models for the HCC 
dataset with no 
covariates included. 

Fig 11. Accuracy 
boxplot for 
AutoMLPipe-BC’s ML 
models for the HCC 
dataset with no 
covariates included. 

Fig 1. This schematic1 from the AutoMLPipe-BC paper demonstrates the key stages in the 
pipeline, including data pre-processing and cleaning, feature importance and selection, 
predictive modeling, and statistical analysis. 

GOAL: Expand upon the artificial neural network (ANN) approach in 
AutoMLPipe-BC by studying recent deep learning literature to identify the 
most viable and efficient approaches for tabular data. Implement the 
most promising DL models and compare the results to the 
AutoMLPipe-BC models. While we will develop the pipeline with generic 
classification tasks in mind, the results will be evaluated on a binary 
classification task.  

• We will effectively develop a DL modeling pipeline to include the 
neural networks of interest, similar to ML Modeling component of the 
schematic, while keeping the remainder of the pipeline stages intact.
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