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Deep Learning Introduction and Tabular Methods

Background

« Machine Learning strategies have become an integral part of the biomedical informatics domain to better model, forecast, and classify complex
interactions in large datasets.

* For classification tasks on such datasets, researchers in the biomedical field have often opted to use more traditional machine learning techniques
(Random Forest, Support Vector Machines, Logistic Regression, etc.), as they are inherently more explainable in terms of the methods through which the
classification is generated.

* More recently, however, the fast-growing field of deep learning (DL) has gained traction, particularly in the ability to accommodate a variety of tasks
(binary classification, multiclass classification, multilabel classification, regression, etc.) and data modalities (image, text, tabular, speech, etc.).

Deep Neural Network Background:

* The foundational model for deep learning is the perceptron neural network.

* The multilayer perceptron (MLP) is a more complex form of the perceptron with hidden layers between the input and output layers (Fig. 1)

* In a feed-forward neural network such as the MLP, inputs are propagated through the network from neuron to neuron, with learned weights
and biases used to select the output in each layer.

* Each neuron consists of a linear function followed by a non-linear activation function such as Rectified Linear Unit (ReLU), Sigmoid, or
Hyperbolic Tangent (tanh), to generate the output of the neuron.

Fig 1. lllustration of multilayer
perceptron model with two
hidden layers and a multiclass
(3 class) classification task.
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the form of images for the described model architectures.
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