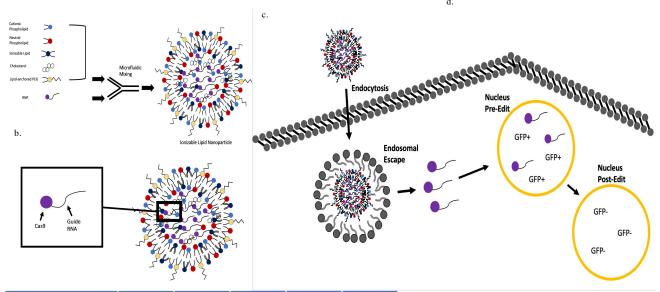


Utilization of Lipid Nanoparticles to Show Proof-Of-Concept of Gene-Editing of Lung Cells for Future Studies Regarding Cystic Fibrosis

Acknowledgements:

PURM, CURF, Rebecca Haley, Dr. Michael Mitchell

Matthew Jester, Rebecca Haley, Dr. Michael Mitchell


Background

- Cystic fibrosis (CF) is a genetic disorder; alters functionality of cells that produce mucus, sweat and digestive juices
- CF decreases life expectancy by ~30 years
- c CRISPR Cas9 gene editing technology; complex of Cas9 and guide RNA
 - Guide RNA encodes for DNA needing to be edited out
 - o Cas9 cuts out DNA strand
- Lipid nanoparticle technology
 - o Encapsulating cargo
 - Transfecting cell
- o Toxicity of gene editing

Goals

- Show proof-of-concept that lipid nanoparticles can transfect and edit in lung cells
- Optimize lipid nanoparticle formulation to maximize efficacy & minimize toxicity

Methods & Results

	DLS - Zavg	DLS - PDI	Zeta Poten tial		Nano Drop
Average	98.26 nm	.147	22.4	Concent ration (ng/µl)	72.16
St. Dev.	0.81	0.002	1.082	Ratio	2.05

Mean : GRN-B-HI	in	SampleID RNP LNPs	\$WE
	GFP-	Н	
100 101	102	10 ³ 10 ⁴	105
0 -		1	
1	1		
20	/ \ <mark>/</mark>		
40 -		19	
1	A	M	
Count			
_]			
80 - 70.8%		29.2	70
46.7%	Δ	53.3° 29.2°	
11.4%	Λ	88.6	
GFP-		GFP	

Mean : GRN-B-HLin	SampleID	\$WELLID
634	RNP LNPs	B04
576	CRISPRmax	B08
1903	control	A01

Discussion

- A basic, non-optimized LNP formulation was used to show proof-of-concept
- GFP expressing human non-small cell lung carcinoma cell line was used
- Ability to transfect and edit human non-small cell lung carcinoma cells shows proof-of-concept that the LNPs can edit lung cells – where CF gene is present
- 98.26 nm is large compared to LNPs encapsulating RNA due to the larger size of the Cas9-guideRNA cargo
- Positive Zeta potential, according to SORT, allows LNPs to navigate to the lungs
- Commercial agent CRISPRmax had a higher editing success rate than the LNP formulation
- CRISPRmax shown to be toxic to cells

Future Work

- Optimize LNP formulation
- Work with different lung cell lines to ensure functionality