Developing a Coding System for Social Robot Interactions with Patients of Motor and Cognitive Impairment

Julie Elfishawy^{1, 4}, Michael J. Sobrepera^{2, 4}, Michelle J. Johnson, Ph.D.^{2,3,4}

College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA (Expected Graduation 2024)
 Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania
 Department of Physical Medicine and Rehabilitation, University of Pennsylvania
 Rehab Robotics Lab

Introduction

- Approximately 50 million individuals worldwide suffer from dementia, a chronic, progressive syndrome [1].
- Prolonged absence of stimulation increases social isolation; this can be combated by use of social robots in treatment [2].
- Ensuring suitability for patients at all cognitive levels allows robot rehabilitation treatment to support dementia patients.
- Supporting patients at all motor functionality levels allows optimal applicability for robot rehabilitation techniques.
- Manual video coding produces authentic and robust data for analysis of clinical interactions.
- Objective: To develop a methodical coding system for assessing video footage of human-robot interactions (HRIs) for engagement, experience, and performance between a socially assistive robot system and patients of varying motor and cognitive abilities.

Goals

- 1. Study what happens socially when cognitively impaired patients interact with a socially assistive robot
- 2. Investigate how to report performance on cognitive and motor assessments administered via a socially assistive robot
- 3. Establish metrics and coding scheme for evaluation of engagement, success, and other measures within human-robot interactions

Social Robot Design and Assessment Tasks

Fig 1. Lil' Flo: socially assistive humanoid robot

• Trials involved 2 assessment tasks

- Simon Says:
- Instructions for physical actions that mimic activities of daily living (ADLs)
- Tests range of motion
- Tests executive function and working memory
- <u>Target Touch</u>:
- Instructions to touch a sequence of prescribed colored dots on robot hands
- Tests motor function of arms and hands
- Tests working memory for instruction sequences
- Tests attention and motivation

Methods

CODEBOOK DESIGN PROCESS

- Video coding with a properly curated codebook addresses limitations and subjectivity associated with other analysis techniques (surveys, rating scales, etc.)
- Drew upon literature of video coding similar HRIs among similar impaired populations
- Followed industry-standard procedure for codebook development:
- Cycle to repeat 2-4 times: Draft, test, refine
- Directly align codes with research objectives
- Have clearly-defined definitions for all codes
- Specify time dependency of codes
- Designate exhaustive codes
- Eliminate redundancy or conflict between codes
- Define passes coders must make
- Meet with coders to discuss codebook and eliminate ambiguity
- Video Coding Protocol Interpreting Observed Emotion (VC-IOE) Scheme [3] reflects many relevant dimensions; became suitable foundation
 - Targeted towards engagement of dementia patients in HRIs but applies to all populations
 - Accounts for **blunted affect**: reduced emotionality stemming from dementia
 - Adopted and refined dimensions on (1) verbal engagement, (2) visual engagement, (3) emotional response, (4) collective engagement
- Added dimensions on (1) observed motor limitations, (2) performance level in assessment tasks, (3) interplay of roles of robot and operator respectively

ANALYZING SOCIABILITY

- Coding subjects' display of emotion for entire duration of trial (exhaustive coding dimension) reveals trends in sociability of robot
- Can be linked to cognitive and motor dimensions to stratify sociability amongst patient categories
- Comparing coded roles of robot and operator with subject emotion indicates social acceptability of robot (non-traditional rehabilitation entity)

- SS Subject's success in assessment task [time-based, code when assessment task is taking place- between whichever comes first: end of prompt or start of action, and start of next prompt] **low time-sensitivity**
- A. Performing task successfully (SU): fully and successfully participating in assessment tasks, not requiring repetition or additional prompts (even if prompts are given in an unsolicited manner)
- **B.** Perform task successfully after requiring <u>repetition</u> (SUR): subject performs the directions accurately after a repetition of the direction is given (via SAR or operator)
- **C.** Perform task successfully after requiring <u>correction</u> (SUC): subject performs the directions accurately after a modification or correction is given (via SAR or operator)
- D. Unsuccessful (US): subject fails to accurately perform the directions given
- E. Did not attempt (DNA): subject does not attempt the directions given

Fig 2. One of the 12 coding dimensions in the developed system with its specific time-dependency and the corresponding subcodes with individual definitions

Flexion Extension Adial Deviation Ulnar Deviation Pronation Supination

Fig 3. Diagram of full range of motion cues in the hand [4]

Neutral Supination Pronation

Fig 4. Diagram of full range of motion cues in the elbow [5]

ANALYZING COGNITIVE FUNCTION

- Coding quantifies subjects' emotional response, cognitive performance, ability to interact with robot, etc. for analysis
- Reveals acceptability of robot rehabilitation methodology for patients at various cognitive levels
- Ex: linking dimensions of subject success and subject emotion provides valuable data for analysis

ANALYZING MOTOR FUNCTION

- Limitations of shoulder, elbow, hand, and trunk are coded for in video data
- Evidence of motor limitations seen in assessment tasks
- Recording video footage allows for documentation of range of motion progress or decline

SOFTWARE

- Video coding software Datavyu and MaxQDA were tested and compared
- MaxQDA was selected due to suitability for codebook design, ease of use

Implementation

CODED DATA

- Codes are dragged and dropped onto specific intervals of video footage
- Several codes can be applied to any given video segment
- Duration or frequency of codes can be extracted as data for analysis
- Coders are recommended to use several **coding passes:** focusing on 1-2 coding dimensions at a time while viewing the video footage

Fig 5. Coded data on MaxQDA

EXPORT

- Exported coded data can be analyzed using various statistical analysis measures
- Linking coding dimensions allows for multi-faceted conclusions and testing of complex hypotheses
- Following standard coding practices allows reliable and objective data to be derived directly from human trials

INTERCODER RELIABILITY

- To mitigate subjectivity and establish credibility, several coders must work on video data
- Metrics for intercoder reliability reveal agreement
- Must meet predetermined threshold (typically >90% agreement)

Conclusions

- The curated codebook is now ready to be utilized for manual video coding and thus assessed for functionality and applicability to footage from trials with socially assistive robots
- The codebook can be used as a baseline to be adapted for other studies on SAR interactions, especially those involving motor and cognitive assessment tasks

Acknowledgements

This work was supported by the Penn Undergraduate Research Mentoring Program (PURM) and the Rehabilitation Robotics Lab at the Perelman School of Medicine at the University of Pennsylvania.

References

- [1] "Dementia." World Health Organization, World Health Organization, www.who.int/news-room/fact-sheets/detail/dementia.
- [2] Cacioppo, John T et al. "Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses." *Psychology and aging* vol. 21,1 (2006): 140-51. doi:10.1037/0882-7974.21.1.140
- [3] Jones, Cindy, et al. "Assessing Engagement in People with Dementia: A New Approach to Assessment Using Video Analysis." *Archives of Psychiatric Nursing*, vol. 29, no. 6, 2015, pp. 377–382., doi:10.1016/j.apnu.2015.06.019.
- [4] Ryan. "Wrist Angles Part 1 & 2." *The Kennedy Academy*, ryankennedypga.com/2018/10/17/wrist-angles-part-1-2/.
- [5] Copaci, D., et al. [Pdf] New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators: Semantic Scholar. 1 Jan. 1970, www.semanticscholar.org/paper/New-Design-of-a-Soft-Robotics-Wearable-Elbow-Based-Copaci-
- Cano/ff08fd64edca1cc42f160048a7acb0a2736c625b.