
Castle Escape
Can we create a video game-inspired visualization of many of the classic artificial intelligence pathfinding algorithms?

To answer this question, we first need to ask…

Which Pathfinding Algorithms Do We Hope to Model?

Breadth First Search
is an algorithm that explores out from a starting point level-by-level. In other words, tiles at a depth of one will be

explored first, then those of depth two, then three, and so on until the destination tile is found.

Depth First Search
is an algorithm that explores out from a starting point as deep as possible before backtracking and trying a different

direction.

Iterative Deepening Depth First Search
is an algorithm that runs Depth First Search repeatedly from the starting point, exploring down one direction until a

depth limit is reached. With each iteration, the depth limit increases until the destination is found.

A*
is an algorithm that uses a heuristic to approximate the shortest path. For each cell, the algorithm calculates the

distance from the initial tile to the current tile and adds the estimated distance between the current tile and the
destination tile. It uses this value to then decide which direction to move in next.

Knowing which algorithms that we hoped to model, we needed to create an engaging platform to implement
them onto…

How Can We Implement These Algorithms?

The next steps involved create the skeleton of a video game. Choosing a castle
theme, we then created a 20x20 tile grid to represent a game board, on which
we created obstacles, walls, and various characters. The main character-– the
queen– is controlled by the user and moves along the paths returned by these
various algorithms each time the user clicked on the screen.

Selecting the Algorithm
The user must simply press

the key representing the algorithm
before clicking on the screen in
order to switch to using that
algorithm to move.

Implementing the
Algorithm

Once the user clicks on
the screen, the position of the
click is sent through the code
and to the appropriate
algorithm. The algorithm then
matches the clicked tile to a
node. This node represents the
destination that the algorithm
finds a path to from the
starting node.

We Can Visualize the Algorithms… So What?

Each algorithm is implemented such that every time a tile is explored (as in…
could this tile be along the path?), it is colored blue. For Breadth First Search, we
added a red tile to represent the current tile being examined, allowing us to
understand where the algorithm would then branch out from. In Iterative
Deepening Depth First Search, we added colors to represent each depth level being
explored. We then see that each iteration, or call to DFS, is colored differently.
Lastly, we denote the final returned path by smaller black squares.

By coloring the tiles in this way, it is clear to see when an algorithm has not been
implemented correctly, making debugging code much easier. For example, if tiles
to the right of the starting position are continually being colored blue on Breadth
First Search, there is likely an error in the code. Additionally, the difference in the
behavior between these algorithms appears much more obvious, allowing us to gain
a better understanding of which algorithm may be better suited to achieve various
goals.

Are there any extensions?

Beyond determining if there is an efficient way to travel from point A to point B,
we can also use Depth First Search to randomly generate a room configuration,
allowing us to simulate a maze. That is, we can use Depth First Search to find a
path from the entrance to the exit, and randomly choose the tiles not along this
path to become walls– much like a maze.

Within this maze, we can test out various algorithms to see how they would
respond and better understand them. Here, we see how Breadth First Search can
find every possible path outwards from a starting position:

How Does This Help Us Visualize the Algorithms?
But…

Breadth First Search
We can now clearly see the each

direction being explored equally, creating a
diamond pattern out from the start
position.

Depth First
Search

It is now easier to see the
difference between Breadth
and Depth first search. Instead
of the diamond–like pattern,
this algorithm tries to continue
in one direction for as far as
possible. While Breadth First
Search can sometimes find the
shortest path, Depth First
Search can find a much
longer one.

Iterative Deepening Depth First Search
Here, we see how the algorithm behaves as a hybrid between Breadth and Depth First Search, trying to continue in

one direction, but until a depth limit is reached. While we see a diamond-like exploration, the path is more like DFS.

A*
Reliable in

finding the shortest
path, A* explores the
smallest amount,
continually choosing
the direction with the
shortest distance from
the current tile to the
end.

