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Background: Methane Functionalization

The current industrial means of methane (natural gas) utilization can have
negative implications from its liquefaction and storage, on top of those
from the economic standpoint!.

Solution: methane functionalization

While many scientists and researchers have explored transitional metal
complexes as catalysts for alkane functionalization?34 , the Goldberg
group aims to achieve selective alkane functionalization using oxygen as a
sustainable, terminal oxidant>.

Reaction: Metal-Free Alkane Iodination
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Important Notes:

- Too much I, is inhibits the overall catalytic activity but is necessary as a
reagent to selectively produce iodinated alkyl products over
oxygenated products (cyclohexanol and cyclohexanone)

O, serves as the terminal oxidant and the thermodynamic driving force
to propel the catalytic cycle

Cl- is the photocatalyst which must be regenerated to generate one
catalytic turnover (one equivalent of functionalized cyclohexane)

Prior Work: Water Optimization

An optimal condition of 1% water (v/v%) in solvent CH;CN was
determined.

Fig. 1 A schematic of the H,O-HCI interactions in the slow aerobic regime
of the metal-free alkane iodination reaction, is shown.
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The purple box illustrates the proposed role of water which is helping
dissociate the HCI® through Bronsted acid-base tendencies and regenerate
Cl- ions to further produce the desired [I,Cl-] reaction intermediate.
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Reaction Scale-Up

Continuous flow photochemistry as a field has grown in its popularity for the key reasons of
being able to safely and systematically create target products in a reproducible manner’. In this
project, the batch reactor design and flow reactor design were explored.
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Less uniform and weaker light penetration  Uniform and strong light penetration

Flow

Ring stand
w/ clamp

Control of [O,] as headspace volume of Limited by max [O,] saturation in solvent
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Complete Reaction Paths

Pre-photolysis (accumulate [1,] ) Pre-photolysis (steady-state addition of solution)

Inlet solution

l Photolysis

Photolysis (steady-state addition of [I,] ) Post-photolysis (exit stream)

SFMT + sample
d holder w/ flowing

Motivation & Objective: ol solution

« Improve the overall catalytic activity of the iodination reaction.

« Fine-tune the selectivity of the iodinated alkyl product as a function of time and other
experimental parameters.

Outlet test
tube covere

Batch Reactor Design
Batch Experiments Conditions Fig. 2 Productivity of CyH functionalization®? and selectivity of Cyl
production, reported as turnover number (TON) after 24 hr.
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Flow-Reactor Experiments Conditions
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Fig. 3 Productivity of CyH functionalization®? and selectivity of Cyl
production, reported as turnover number (TON) and product yield.
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Conclusions

The iodination of cyclohexane can be successfully facilitated with an
aerobic, metal-free photochemical process.

The optimal water condition to maximize total catalytic productivity
exists at 1% (v/v %) water in CH;CN (See Fig. 1)

A batch reactor design with pumping of I, reagent allows for

linear catalytic productivity over the course of experiment
(See Fig. 2)

A flow reactor design has large source of error that needs
identification but gives faster catalytic productivity (See Fig. 3)

Future Directions

Future work and plans include:
Modifying more parameters of the flow system to understand its
functionality (i.e., temperature monitoring, diffusion of species across
system, etc.)

Exploring iridium photochemistry under green-light to achieve
selectivity for roles of species within the proposed reaction mechanism.

Cl

Clu, C* + R-H—= HCl +R"

Ir
-

Outer-sphere photo-sensitized oxidation of Cl- anions (as shown) via an
Ir(IV) aquo complex as a result of photoexcitation could be an
alternative to [I,Cl-] speciation as the means of generating Cl* radical
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