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ConclusionsReaction Scale-Up
The current industrial means of methane (natural gas) utilization can have
negative implications from its liquefaction and storage, on top of those
from the economic standpoint1.
Solution: methane functionalization
While many scientists and researchers have explored transitional metal
complexes as catalysts for alkane functionalization2,3,4 , the Goldberg
group aims to achieve selective alkane functionalization using oxygen as a
sustainable, terminal oxidant5.

Batch Reactor Design

Continuous flow photochemistry as a field has grown in its popularity for the key reasons of
being able to safely and systematically create target products in a reproducible manner7. In this
project, the batch reactor design and flow reactor design were explored.

Prior Work: Water Optimization

Fig. 2 Productivity of CyH functionalizationa,b and selectivity of CyI
production, reported as turnover number (TON) after 24 hr.

Flow Reactor Design

• The iodination of cyclohexane can be successfully facilitated with an
aerobic, metal-free photochemical process.

• The optimal water condition to maximize total catalytic productivity
exists at 1% (v/v %) water in CH3CN (See Fig. 1)

• A batch reactor design with pumping of I2 reagent allows for
linear catalytic productivity over the course of experiment
(See Fig. 2)

• A flow reactor design has large source of error that needs
identification but gives faster catalytic productivity (See Fig. 3)

Triphasic Process

Each phase has a variable 
length & volume

Fig. 3 Productivity of CyH functionalizationa,b and selectivity of CyI
production, reported as turnover number (TON) and product yield.
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Future work and plans include:

• Modifying more parameters of the flow system to understand its
functionality (i.e., temperature monitoring, diffusion of species across
system, etc.)

• Exploring iridium photochemistry under green-light to achieve 
selectivity for roles of species within the proposed reaction mechanism.

• Outer-sphere photo-sensitized oxidation of Cl- anions (as shown) via an 
Ir(IV) aquo complex as a result of photoexcitation could be an 
alternative to  [I2Cl-] speciation as the means of generating Cl• radical 

Fast anaerobic regime

Slow aerobic regime

Important Notes:
• Too much I2 is inhibits the overall catalytic activity but is necessary as a

reagent to selectively produce iodinated alkyl products over
oxygenated products (cyclohexanol and cyclohexanone)

• O2 serves as the terminal oxidant and the thermodynamic driving force
to propel the catalytic cycle

• Cl- is the photocatalyst which must be regenerated to generate one
catalytic turnover (one equivalent of functionalized cyclohexane)

An optimal condition of 1% water (v/v%) in solvent CH3CN was
determined.

Fig. 1 A schematic of the H2O-HCl interactions in the slow aerobic regime
of the metal-free alkane iodination reaction, is shown.

The purple box illustrates the proposed role of water which is helping
dissociate the HCl6 through Bronsted acid-base tendencies and regenerate
Cl- ions to further produce the desired [I2Cl-] reaction intermediate.

Motivation & Objective:
• Improve the overall catalytic activity of the iodination reaction.
• Fine-tune the selectivity of the iodinated alkyl product as a function of time and other

experimental parameters.

Flow-Reactor Experiments Conditions

Baseline 

Reference 

• 99% stock (ttbbz/tbaCl/MeCN)

• 1% water

• 240 µL CyH

• [Cl-] = 1.1 mM [I2] = 31 mM

[O2] = 2.6 mM

Changed Parameters

Experiment
Inlet Stream

Solution Addition 

Rate [µL/min]
Notes

A 9.33 -

B 18.67 2× rate

C 18.67 Duplication of “B”

D 46.67 5× rate

E 18.67
2× rate w/ 

cooling

Batch Experiments Conditions

Baseline 

Reference 

• 99% stock 

(ttbbz/tbaCl/MeCN)

• 1% water

• 40 µL CyH

• 33 mg I2

5 times scale-up (5 × baseline)

Experiment

I2 Addition

Amount [I2] 

Accumulated
[I2] Addition Rate 

A Standard Standard

B 2 × Standard

C 2 × ~ 4 ×

D 20 × ~ 4 ×

E ~ 7 × ~ 4 ×

Batch

Flow

Net Reaction


