The Formalization of Permutation Netwo

What is a Permutation Network?

Permutation networks are circuits of configurable switches, such that their output is always a permutation of the input.

```
Record circuit {a: Type}(inp out: nat) :=
circ {
    ns: nat;
    f: Vector.t bool ns ->> Vector.t a inp >> Vector.t a out;
```

Mutex (Mutual Exclusion) A mutex is a column of switches. It is appended to both left and right side of a benes network in the inductive definition. A mutex of size n has n switches, $2^{*} n$ inputs, and 2*n outputs.

Our choice of permutation network...

We chose to use the benes network. The size of the benes network is exponential to `n` which we pass as an argument to the construction of the circuit. The `\(n\)` in benes is proportional to the size of the circuit, number of switches. The number of inputs = outputs which is $2^{\mathrm{Sn}}, \mathrm{Sn}$ denoting the successor of n, or $2^{*} 2^{n}$. The number of switches is equal to $\left(2^{*} n+1\right) * 2^{n}$. A benes network is composed of two mutexes, multiple stages of switches, and the proper wirings that connect them all.

Permutation Network Properties:

1. Configurable $\rightarrow \mathrm{n}$ configuration bits, n ! permutations
2. Reversible \rightarrow involution
3. Scalable \rightarrow Poly-logarithmic number of configurations
4. Parametric polymorphic \rightarrow Generalization of types
5. \# Inputs = \# Outputs \rightarrow Must be a power of 2

器Penn

