The Formalization of Permutation Networks

Christa E. Simaan - SEAS 2024

What is a Permutation **Network?**

Permutation networks are circuits of configurable switches, such that their output is always a permutation of the input.

```
Record circuit {a: Type}(inp out: nat) :=
circ {
    ns: nat;
    f : Vector.t bool ns -> Vector.t a inp -> Vector.t a out;
   了。
```

Mutex (Mutual Exclusion)

A mutex is a column of switches. It is appended to both left and right side of a benes network in the inductive definition. A mutex of size n has n switches, 2*n inputs, and 2*n outputs.

Our choice of permutation network...

We chose to use the benes network. The size of the benes network is exponential to `n` which we pass as an argument to the construction of the circuit. The `n` in benes is proportional to the size of the circuit, number of switches. The number of inputs = outputs which is 2^{S n}, S n denoting the successor of n, or 2*2ⁿ. The number of switches is equal to $(2^{n} + 1) * 2^{n}$. A benes network is composed of two mutexes, multiple stages of switches, and the proper wirings that connect them all.

Permutation Network Properties:

- - configuration bits, n!
- permutations
- 2. Reversible \rightarrow involution
- 3. Scalable \rightarrow Poly-logarithmic
 - number of configurations
- 4. Parametric polymorphic \rightarrow
 - Generalization of types
- 5. # Inputs = # Outputs \rightarrow Must
 - be a power of 2

1. Configurable \rightarrow n

*Note that transpose_help concatenates list heads