Jacqueline Aquino, Dustin Brown, Zhifeng Zhang, Dr. Liang Feng

Introduction
-With adequate integration, Orbital Angular
Momentum(OAM) has promising potential to
be an additional dimension for information
capacity and optical communication next to
the limited properties of light like wavelength

-Points on the Higher Order Poincare(HOP) sphere represent OAM states
-Through controlling phase and amplitude differences, the OAM states are mapped onto the HOP surface

Goals

-Detect and characterize OAM states to retrieve phase and amplitude difference -Optimize original OAM microlaser design

Method 2:

- Required additional component: Quarter Wave Plate (QWP) - Collected intensity patterns at varying linear polarizer and wave plate orientations as well as different heater current conditions

Section 2: Data Analysis/Image Processing Method 1: *Utilized Matlab for image processing

- Tracing interference maxima and minima to retrieve the phase and amplitude information
Important Steps:
ouput $=x_{1} P_{1}+x_{2} P_{2} * e^{\text {eqPPHI }}$

1. Normalize the 2 pole state mrage intensiues
2. Determine center of beam given not pure circle
3. Multiplex pattern with OAM phase map
4. Multiplex pattern with OAM phase map

$$
\begin{gathered}
E_{+2}=E_{1} * e^{(2 * i * p h i)} \\
E_{-2}=E_{2} * e^{(-2 * i * p h i)} * e^{(i * P H I)}
\end{gathered}
$$

Method 2:
-Stokes Polarimetry to determine the phase difference and power ratio at different heater settings
-LP = linear polarization; s = circular polarization
-Psi = Phase difference; Chi = Chiral Ratio
$\begin{array}{ll}S_{1}(r, \phi)=I_{L P, 0}(r, \phi)-I_{L P, 90}(r, \phi) & \quad 2 \psi=\arctan \frac{S_{2}}{S_{1}} \\ S_{2}(r, \phi)=I_{L P, 45}(r, \phi)-I_{L P, 135}(r, \phi) & 2 \chi=\arctan \end{array}$ $\begin{array}{lr}S_{3}(r, \phi)=I_{S, 135}(r, \phi)-I_{S, 45}(r, \phi) & \quad 2 \chi=\arctan \frac{S_{3}}{\sqrt{S_{1}^{2}+S_{2}^{2}}}\end{array}$
$S_{3}(t$
Method 1 .
-Angle between min and max is fixed at 45°
-Minimum angle is affected by noise from
spontaneous emission from beam; naturally
cannot get accurate chiral ratio results
-Minimum angle is affected by noise from spontaneous emission from beam; naturally cannot get accurate chiral ratio results

Method 2:

Discussion

Method 1:
-Limitation: Interference from noise -Despite cancelling background noise, there was still prominent noise from spontaneous emission of the beam itself
-Must continue to optimize setup and analyzation method to increase signal to noise ratio

> Method 2:
-No noise given both background and spontaneous noise cancel through nature of Stokes Parameter equations (subtraction)

- Data validates use of heater for control/tunability of phase difference

Acknowledgments

-Materials Science and Engineering Department
-Electrical Engineering Department -CURF Penn Undergraduate Research Mentorship Program (PURM)

References

-Bozinovic, N., Yue, Y,., Ren, Y, Tur, M., Kisitensen, P., Huang, H., Willer, E., \& Ramachandran, S. (2013). Terabi-Scale orbital angular moment
mode division multilexing in fibers. Science, $340(6140$), $1545-1548$.

-Miao, P., Zhang, Z., Sun, J., Walasik, W.. Longhi, S.L Litchinitser, N. M., \& Feng, L. (2016). Oroitial Angular MMomentum Microlaser. Science, 353(6298) -Naidoo, D.., Roux, F. S., Dudeley, A., Litvin, I., Piccirillo, B., Marrucci, L., \& Forbes, A. (2016, March 14). Controlled generation of higher-order
POINCARE Sphere beams trom a laser. nature photonics. POINCARE Sphere beams trom a laser. nature photonics.
Wikimedia Foundation. (2021, June 22). Stokes
-Wikimedia Foundation. (2021, June 22). Stokes p
https:/l/en.wikipedia.orgwiki/Stokes_parameters.

