
Motivation and Objective
Background
We are interested in using an Unmanned Underwater Vehicle (UUV) to follow an 
underwater pipeline by keeping parallel with it a certain distance away. The UUV has an 
Inertial Measurement Unit (IMU), Doppler Velocity Log (DVL), and multiple sonar sensors 
that allow it to know its state and scan its environment. We are concerned with sonar 
images gathered from the side-facing sonar.
Motivation

- Autonomous systems require robust perception of the environments
- Verifying that a complex system behaves correctly is difficult; however, verifying its 

neural net-based perception is a stepping stone to the whole-system guarantees 
Goal

- Construct a perception system for the UUV’s lateral distance to the pipeline (“range”)
- Computationally verify the robustness of that perception system

Challenges
- Realistic sonar simulation and perturbations

        need to be designed
- Sonar scans are high-dimensional and noisy,

making verification of model robustness
non-trivial for large networks
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Verifiably Robust 
Sonar Perception

Perception Decomposition
It is difficult to verify robustness claims by considering the entire perception system. 
To make the problem tractable, we split it into patch segmentation using a CNN for 
pipeline detection and range perception using the patches. Verifying segmentation 
robustness implies end-to-end perception robustness:

Pipeline Patch Segmentation
A CNN was trained until convergence on an 
NVIDIA P100 GPU to detect the presence of 
pipeline in a given patch (segmentation) 
using 10 noisy simulated UUV runs. Two 
other runs were kept hidden as a 
holdout/validation set, and six runs were 
kept as a test set for robustness estimation.

Pipeline Range Estimation
To estimate the Euclidean distance from the UUV to the pipeline in a given image, the 
classified patches C and the sonar image S are used to construct a weighted average of 
relevant values from the distance matrix D.

From the Euclidean distance estimate, the UUV height-from-seafloor estimate, roll, and 
pitch are used to compute the seafloor distance (range) using trigonometry.

Robustness Verification
In order to verify robustness of range estimation, our system considers the 
misclassification of each tile in an image, and how that affects  range estimation. Neurify 
verified safety of the networks when faced with attack vector X’ generated from network 
input X as follows:

In particular, for each tile, Neurify identifies whether the classification can be 
successfully attacked with an ε-bounded L-∞ perturbation. In order to provide a 
conservative robustness guarantee, we then calculate a range using all permutations of 
unsafe and undetermined tiles, which is equivalent to all possible segmentations within ε 
of the entire image.

Results & Conclusions
Range Estimation Accuracy: We compare 
our method against two existing baselines. 
However, these baselines were calculated 
using the clean images due to engineering 
constraints, meaning that their performance 
is actually overstated compared to our 
method, which uses noisy images. Still, we 
find our method performs significantly better 
than the two existing legacy methods.

Range Estimation Robustness: By checking 
exhaustively the set of segmentation 
permutations and ranges for representative 
sample of the test set, we can provide strong 
guarantees of robustness against L-∞ 
norm-bounded perturbations. Even against 
significant perturbations, our network was 
very robust and no adversarial tiles were 
identified. Performance of our network 
decreased as the size of the attack 
increased—at ε = 100, performance was still 
strong, with an average range estimation 
error of 17.9%.

We have studied an approach on improving the robustness of neural networks in 
real-world perception tasks by decomposing a complex function into 
tractably-verificable parts. In particular, by utilizing patch segmentation, we were able 
to analyze and provide meaningful guarantees on the robustness of the end-to-end 
perception system. In doing so, we developed a highly accurate and robust range 
estimation method that significantly outperforms existing baselines. Future work 
mayentail further enhancements to the network, as well as perhaps a deeper look into 
how different attacks such as L-1 or L-0 affect system robustness.

Perception System Overview
We model and test our control and perception system using a Gazebo and ROS based 
simulator. We are able to manipulate the starting position, heading, and controller of 
the UUV allowing us to gather a diverse dataset to be used to evaluate and train our 
range estimation pipeline. The UUV in the simulator will periodically send out sonar 
scans on the side sonar. Each ray in the sonar scan corresponds to a pixel in the sonar 
image reflecting intensity and the distance of the ray. We collect this data to generate a 
sonar image along with synchronized pose and true range information and feed this to 
our range estimation and evaluation pipeline.

The simulator environment lacked noise and variability in sonar images. We improved 
upon this by adding Gaussian noise and localized pipeline noise. 

Using these attack vectors, our system generated all possible permutations of the binary 
mask, and determined the set of possible range estimates. We then store absolute 
differences in range estimates and our pipeline’s estimate, thereby enabling concrete 
statements regarding the robustness of our system in the presence of noise and other 
attacks.

Sonar

Controller

Range/Heading 
Perception

Plant
(UUV)

Environment 
(Pipe)

Standard data augmentations increased accuracy against noisy images. However, 
multiple other attempts to increase robustness (L1/L2 regularization, dropout layers, 
ensembling models) did not significantly improve accuracy. Adding more layers to the 
CNN did not significantly increase accuracy either; this may be due to the fact that our 
patch classification task for segmentation may not benefit from the additional 
non-linearity of a deeper neural network.

Visualization of the CNN architecture.

Visualization of an intensity scan (clean and noisy) and the 
patch segmentation.

Visualization of range estimates over the course of one 
simulated run. Orange, ground truth; blue, our method; green, 

baseline 1; red, baseline 2.
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Summary of accuracy results.

Green tiles are safe, while we conservatively consider undetermined 
(yellow) tiles to be unsafe (red) as well in generation of permutations.

UUV Simulation (Green: UUV Path, 
Blue: Pipeline

Sonar image with localized pipe noise
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Problem Statement
Our goal is to estimate the seafloor distance between the UUV and pipeline using the 
state of the UUV and sonar images. We then analyze the robustness of our range 
estimation by perturbing a given number of pixels within the sonar images.
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Summary of robustness results; all epsilons are in L∞-norm. The 
average ground-truth range was 26.2


