ABSTRACT

BACKGROUND

RESEARCH QUESTIONS

HYPOTHDSS

METHODS
${ }^{\text {Software }}$

Statistical methods and comparison

 est will be used
ANOVA - ANova A Analysis of variance assesses whecher the population

Logistic Regression Lopisicic regessisin is astatisical model

RESULTS

Age

Table $1:$ T-test of age between those with no LCINS
and those with LCINS

Age	No history	History
Average	71.00	72.34
Sample Variance	35.03	34.82
Sample size	31124	5210
t-value	2.57	
t-critical valu	1.65	

Height, Weight, and BMI

Table 2B: T -test of height between those with no
LCINS and those with history of LCINS

Race

Figure 3: Bar graph of proportion of each
group with LCINS and those without CCINS

Table 3A: Two-sample t test of proportions of white population
white population between those with no LCINS and those white population betwe
with history of LCINS

Average	0.91	0.94
Population size	31124	5210
ppoored	0.92	
Z value	6.01	
Z-critical (abs)	1.96	

Table 3B: ANOVA test results accounting for the
difference of means between the six races

A high linear correlation between age and lung
cancer incidencee is observed, with an R^{2} value of
0.92.
The logisic regression model shows an increasing
trend between age and predicted probability of lung rend between age and predicted drobability of Ilug
cancer. This result is furthe corroborated by a p value less than 0.05 (data not shown). The tetest has at value of approximately 2.57 ,
which is greater than the tritical value of 1.65 .
Thus, age is s significant factor for LCINS Thus, age is a significicant factor for LCCINS
incidence.

Table 2C: T- T-est of BMI between those with no
LCINS and those with history of LCINS

All three -t-ests involving weight, height, and
BMI yielded t-values lower than their t-critical
 significant factors in LCINS incidence.
Only -values higher than the t-critical value
 significant role in LCINS incidence.
This result is further corroborated by high p p values greater than 0.05 from log logis

Figure 3B: Logistic regression model of
predicted probability of LCINS by race

Race (see legend)

Through all t-tests* conducted (see Methods section),
 statistically sigigificant prop Caucasian people
with LCINS. The logisitic regression model firther indicictes that
Cuncasian people senerally have a hisher iek of lung Caucasian people generaly have a higher risk of lung
cancer compared to o other races. This result is further cancer compared to other races. This result is further
corroborated by a high p-value greater than 0.05 from logistic regression (datan not shown).
The ANOVA test yields a f value high
 cititca value, rejecting the null hypothesis. This
Indidaces that race is a significant factor for LCINS
incidence. indicates th
incidence.

Rase					
White	${ }^{\text {Average }}$	${ }_{\text {Sum }}$ Sus ofata values	Nimber of data val	014	Sumo Sganeses (total)
Black	0.11	99.00	887.00	summ of gaures (ritilii)	Sum of sumares (betreen)
${ }_{\text {Hispmaic }}$ Asime	0.10	${ }^{284000}$	${ }_{\text {2nem }}^{214800}$	Miseas surred (Mititin)	${ }_{\text {Nean sem }}^{\text {Namared (betreen) }}$
Naitive Havaian or ortere Pacificicslant		18.00			
American Indiana or Alaskan Native	0.09	3.00	3200	fratue	

RESULTS cont'd.

Income

Figure 4A: Bar graph comparing proportions
of patient populations in each income bracket
rigure 4B: Logistic regression model of predicte
11
$!$
\square

Table 4: : ANOVA test results accounting for
difference of means betwee

Bar graph suggests that patients with no
LCINS are associated with higher income However, the logisitici regression model and ANOVA test indicate the popplatition means are
equal. Ther in sot enougus statisical vevidence
equgest incone as a tactor in LCINS to sugest
incidence.

Family History
Table $5:$ Two sample t-test of family history between those with no
LCINS and those with history of LCINS

Eamlly wisory	Non ustor	Hstory	The t-est yielded no staisisical evidence of
	${ }^{0.13}$		ance in means between patients
ppoled	0.13		with a family history of LCINS and those
Natae			

Secondary Smoke Exposure

Table 6: ANOVA test results accounting for the difference of means between
the three grouss of heavy, medium, and no exposure to secondary smoke

The ANOVA test did not yield a
high enough fritical value to high enough f critical value to
reject the null hypothesis, reject hee nuf hypolesiss,
indicating that secondary smoke
exposwre is not siminicicant. exposure is is at a sisnificant
factor for LCINS incidence.

CONCLUSION

FUTURE DIRECTIONS

Include more parameters such as gender and medication history to determine whether any more important factors

- might influence LCINS incidene.
Assessing the correlation between the independent variables would help determine if there are any confounding
Assessing the col
variales at play
Using
User stat
clarelation be
and involving many factors.
These models could be e
datas.
The app
The approach to the data analysis modeds used in this study may be extended to cancer-related and noncancer-related
datasest and could help create a machine learning model that can predict lung cancer based on weighted factors

REFERENCES

