

QUESTIONS

- How can Python be used to merge massive amounts of data (6 months), omit duplicate data rows, automatically calculate average accuracy and latency duration in each reversal, and sort by test parameters?
- Can the Python app be versatile to be applicable across different touchscreen tests?
- Can the Python app be utilizable by experiementers with limited programming knowledge by providing error handling for user inputs?

ABSTRACT

Touchscreen tests are one of the breakthrough models of measuring cognitive performance, such as pattern separation and cognitive flexibility, in both animal and human experiments. These tests are effective due to their translational nature and standardized data outputs. While touchscreen tests have standardized data outputs, there does not exist an automated process of easily cleaning raw touchscreen data. The data output file can easily contain thousands of rows and columns, which may take researchers weeks to months to completely analyze. Not only does manually analyzing raw touchscreen data take an unnecessary amount of time and resources, but also it will inevitably produce unwanted human errors. This research explored the question of can Python be used to simplify the touchscreen data analysis process for ABET data. We utilized Pandas, a software library built on top of Python used specifically for data analysis, as the foundation for the project. The DataFrame data structure and other useful functions were also used to extract important parameters from raw data and import them into a presentable comma separated values (CSV) file. The Tkinter package was used to construct a basic graphical user interface with a main menu, multiple sub-menu pages, easy-to-use buttons, and interchangeable criteria materials. As a result, the application significantly simplified and automated the touchscreen data analysis process for ABET touchscreen data. All the user has to do is click a button based on their desired functionality, locate the directory of the raw touchscreen data, and save the newly created CSV file in another directory. The newly created CSV file contains important parameters such as the percent correct, session duration, and number of trials for the first and second reversal. Additional parameters include the average latencies of reward collections, correct touches, and incorrect touches. The extracted CSV file can then be used to assess performance of tasks using graphing programmings such as Prism. The creation of a touchscreen data analysis application can transform the efficiency of data analysis within the touchscreen community. The data analysis application can be used across multiple ABET touchscreen tests such as General Touchscreen, Location Discrimination Reversal, Acquisition, and Extinction. Members of the touchscreen community who may not have programming experience can pilot the application and change the criterias to fit their own research. This data analysis application is available on my GitHub (raymon-shi) and may be downloaded and shared to members of the touchscreen community for their personal

The touchscreen (TS) operant chamber used to perform tests that measure rodent cognitive performance, such as pattern separation and cognitive flexibility.

Lafayette Instrument: Model 80614

An example of TS test paradigms is the location discrimination reversal (LDR) test. Rodents are challenged to choose the correct lit window in order to receive a reward. After a set amount of trials, the position of the correct side is reversed.

TS tests are effective due to their translational nature and standardized data outputs.

Experimental rodent touchscreen results can be used to solve similar cognitive problems in humans.

Long experiments generate raw output data that contains thousands of rows and columns. Manually analyzing the data takes a tremendous amount of time (weeks/months) and resources.

1	AB	AA	Z	Y	X	W	V	U	т	S	R	Q	P	0	N	M	L	к	1 1	н	G	F	E	D	с	A B
h Trial	rial Anab	(rial Analy?	Trial Analy	rial Anah 1	rial Analy	nd Sumr	nd Sumn E	nd Summ Ei	d Sumn En	d Sumn En	nd Summ E	nd Sumn E	nd Summ E	nd Summ	End Summ Er	Schedule	Notes	le User	x Sche Schedu	Max Num M	e Group ID	ic Experin	I ID Applicatio	da Anim	Schedule run o	edule Environm
5 15	127.745	106.712	83,462	57.13	21.402	0	9	1	0	1	0	30.769	1800	26	1800		:50.408	-17108:37:5	1800 2021-00	81	00 Ket1	To Ket1 L	1 ABET II TO	3:37	6/17/2021 8:	use LD Chamber]
9 24	213.339	195.443	169.102	109.09	90.557	1	18	9	4	2	0	50	1800	38	1800		:37.175	-16T08:36:3	1800 2021-06	81	006Ket1	To Ket1 L	1 ABET II TO	8:36	6/16/2021 8:	use LD Chamber1
						0	0	0	0	0	0	0	145.566	0	145.566		:32.488	-16T08:29:?	1800 2021-00	81	00 Ket1	lo Ket1 L	1 ABET II TO	3:29	6/16/2021 8::	use LD Chamber1
5 21	170.245	147.32	88.029	59.935	29,447	0	19	21	13	10	6	45	1800	40	1800		:13.285	-15T08:38:1	1800 2021-06	81	00€Ket1	To Ket1 L	1 ABET II TO	8:37	6/15/2021 8:	use LD Chamber1
7 1	108.597	87.133	64.547	44.534	28.785	1	24	10	5	2	2	57.143	1800	49	1800		:47.731	-14T08:55:4	1800 2021-06	81	00fKet1	o Keti L	1 ABET II TO	8:55	6/14/2021 8:	use LD Chamber1
						0	0	0	0	0	0	0	53.321	0	53.321		:53.657	-17108:26:5	1800 2021-06	81	00 Ket1	To Ket1_U	1 ABET II TO	3:26	6/17/2021 8:	use LD Chamber]
6 1	126.996	103.599	70.942	50.53	29.379	1	135	20	12	20	1	54.839	1800	31	1800		:50.508	-17T08:37:5	1800 2021-06	81	00 Ket1	To Ket1 L	2 ABET II TO	8:37	6/17/2021 8:	ouse LD Chamber2
4 14	121.864	99.631	64.627	50.2	25.101	1	101	19	27	9	8	41.463	1800	41	1800		:37.275	-16T08:36:3	1800 2021-06	81	00 Ket1	o Ket1_L	2 ABET II TO	8:36	6/16/2021 8:	use LD Chamber2
						0	0	0	0	0	0	0	145.47	0	145.47		:32.588	-16T08:29:3	1800 2021-06	81	00 Ket1	To Ket1 L	2 ABET II TO	3:29	6/16/2021 8:	use LD Chamber2
5 20	173.65	151.767	52.281	36.403	21.279	2	37	8	5	6	13	42.222	1800	45	1800		:13.386	-15T08:38:1	1800 2021-06	81	006Ket1	o Keti L	2 ABET II TO	8:38	6/15/2021 8:	use LD Chamber2
4 20	178.224	158.636	135.065	48.213	29.167	0	24	5	12	4	5	57.895	1800	38	1800		:47.831	-14T08:55:4	1800 2021-06	81	00 Ket1	To Ket1_U	2 ABET II TO	8:55	6/14/2021 8:	use LD Chamber2
						0	0	0	0	0	0	0	117.266	0	117.266		:53.758	-17108:26:5	1800 2021-06	81	00€Ket1	To Ket1 L	2 ABET II TO	8:26	6/17/2021 8:	use LD Chamber2
8 21	169.638	132.846	110.497	70.827	29.35	2	61	31	74	21	16	60.976	1800	41	1800		:50.609	-17T08:37:5	1800 2021-06	81	00 Ket1	o Ket1 L	3 ABET II TO	B:37	6/17/2021 8:	use LD Chamber3
8 128	1218.128	472.519	431.307	189.247	115.983	0	67	17	46	9	4	38,462	1800	13	1800		:37.376	-16T08:36:?	1800 2021-00	81	OCKet1	To Ket1 L	3 ABET II TO	3:36	6/16/2021 8:	use LD Chamber3
			125,441	96.762	49.012	0	0	3	0	2	0	66.667	145.373	3	145.373		:32.689	-16T08:29:?	1800 2021-06	81	006Ket1	To Ket1 L	3 ABET II TO	8:29	6/16/2021 8:	ouse LD Chamber3
2 24	221.012	203.184	184.809	52.011	27.257	0	69	15	25	5	14	14.286	1800	21	1800		:13.486	-15T08:38:7	1800 2021-00	81	OCKet1	o Ket1 L	3 ABET II TO	8:38	6/15/2021 8:	use LD Chamber3
7 26	236.87	212.562	157.209	121.118	79.699	1	57	30	61	20	32	35.897	1800	39	1800		:47.931	-14T08:55:4	1800 2021-06	81	00€Ket1	To Ket1 L	3 ABET II TO	8:55	6/14/2021 8:	use LD Chamber3
					25.948	0	0	0	0	0	0	0	117.165	1	117.165		:53.858	-17T08:26:5	1800 2021-06	81	006 Ket1	o Keti L	3 ABET II TO	8:26	6/17/2021 8:	use LD Chamber3
4 23	200.104	178.997	157.64	90.127	61.954	0	61	68	25	1	10	60.526	1800	38	1800		:50.710	-17108:37:5	1800 2021-00	81	00 Ketl	To Ket1 L	4 ABET II TO	3:37	6/17/2021 8:	use LD Chamber4
9 27	255.119	222.804	174,465	59,423	30.343	2	31	64	43	14	15	56.863	1800	51	1800		:37.477	-16T08:36:3	1800 2021-06	81	006 Ket1	To Ket1 L	4 ABET II TO	8:36	6/16/2021 8:	use LD Chamber4
						0	0	0	0	0	0	0	145.264	0	145.264		:32.790	-16T08:29:?	1800 2021-06	81	00 Ket1	o Ket1 L	4 ABET II TO	3:29	6/16/2021 8:	use LD Chamber4
5 26	235,425	209,46	140,23	69,714	38.828	0	47	31	33	26	4	42.5	1800	40	1800		:13.587	-15T08:38:1	1800 2021-06	81	006Ket1	To Ket1 L	4 ABET II TO	3:38	6/15/2021 8:	use LD Chamber4
7 15	139.47	106.343	89.091	63,939	37.098	1	32	16	29	11	33	59.091	1800	44	1800		:48.032	-14T08:55:4	1800 2021-00	81	00fKet1	o Keti L	4 ABET II TO	8:55	6/14/2021 8:	use LD Chamber4
					0.001	0	0	0	0	0	0	0	117.091	0	117.091		:53.958	-17108:26:5	1800 2021-00	81	OCKet1	To Ket1 L	4 ABET II TO	3:26	6/17/2021 8:	use LD Chamber4
2 33	140,802	116.54	91.855	78,761	20,907	1	10	9	10	6	5	31.818	1800	44	1800		:48,411	-17109:19:4	1800 2021-06	81	00€Ket3	To Ket3 L	9 ABET II TO	9:19	6/17/2021 9:	use LD Chamber
8 15	131.78	106.341	62.309	43.603	25.929	1	25	30	17	5	4	50.943	1800	53	1800		:23.220	-16T09:18:2	1800 2021-06	81	00 Ket3	To Ket3 L	9 ABET II TO	9:18	6/16/2021 9:	use LD Chamber1
5 12	102.645	82.054	65.096	42,421	23.887	1	57	31	33	24	11	52.941	1800	68	1800		:55,908	-15T09:19:5	1800 2021-00	81	00€Ket3	To Ket3 L	9 ABET II TO	9:19	6/15/2021 9:	use LD Chamber]
7 10	92.087	74,466	60.327	41.385	22,389	2	35	33	39	39	21	52.857	1800	70	1800		:38,476	-14T09:40:?	1800 2021-00	81	006 Ket3	To Ket3 L	9 ABET II TO	9:40	6/14/2021 9:4	use LD Chamber1
8 48	362.018	220.595	190.033	132.731	103.81	0	10	11	6	4	5	54.545	1800	22	1800		:48.512	-17109:19:4	1800 2021-00	81	OC Ket3	To Ket3 L	10 ABET II TO	9:19	6/17/2021 9:	use LD Chamber2
4 40	385,114	309,446	193,753	48,603	23.869	1	15	4	10	0	8	36,364	1800	22	1800		:23,320	-16T09:18:7	1800 2021-06	81	00€Ket3	To Ket3 L	10 ABET II TO	9:18	6/16/2021 9:	use LD Chamber2
8 45	418.688	261.391	230.717	186.559	33.036	1	13	4	19	1	0	52.381	1800	21	1800		:56.009	-15T09:19:5	1800 2021-06	81	00 Ket3	To Ket3 L	10 ABET II TO	9:19	6/15/2021 9:	use LD Chamber2
3 17	152.073	127.334	98.174	72.835	16.135	0	25	11	5	8	2	32.143	1800	28	1800		:38.577	-14109:40:2	1800 2021-00	81	OCEKet3	To Ket3 L	10 ABET II TO	9:40	6/14/2021 9:4	use LD Chamber2
4 45	344,944	295.014	221.337	176.93	56.821	1	58	18	10	9	10	52	1800	25	1800		:48.613	-17109:19:4	1800 2021-06	81	00€Ket3	To Ket3 L	11 ABET II TO	9:19	6/17/2021 9::	use LD Chamber3
1 36	340.01	307.451	113.522	66.553	35.001	1	153	14	11	5	1	56.522	1800	23	1800		:23.420	-16T09:18:2	1800 2021-00	81	OC Ket3	To Ket3 L	11 ABET II TO	9:18	6/16/2021 9:	ouse LD Chamber3
5 1	136,785	110.287	84.858	55,347	32.15	1	230	94	29	21	0	57,143	1800	28	1800		:56,109	-15T09:19:5	1800 2021-06	81	00€Ket3	To Ket3 L	11 ABET II TO	9:19	6/15/2021 9:	use LD Chamber3
5 17	119.875	96.215	70.627	42,768	27,155	0	174	88	27	14	4	34,375	1800	32	1800		:38.677	-14T09:40:?	1800 2021-00	81	00 Ket3	lo Ket3 L	11 ABET II TO	9:40	6/14/2021 9:4	use LD Chamber3
7 2	224.227	196.37	155.193	76.076	47.313	2	18	10	11	1	4	64.583	1800	48	1800		:48.713	-17109:19:4	1800 2021-00	81	00 Ket3	To Ket3 L	12 ABET II TO	9:19	6/17/2021 9:	use LD Chamber4
2 18	151.322	102.026	50.082	28,961	0.001	1	21	23	57	0	2	51.02	1800	49	1800		:23,520	-16T09:18:2	1800 2021-06	81	00€Ket3	To Ket3 L	12 ABET II TO	9:18	6/16/2021 9::	use LD Chamber4
7 28	259.137	201.785	157.963	27.988	0.001	1	43	16	35	12	3	46.939	1800	49	1800		:56.209	-15T09:19:5	1800 2021-00	81	00 Ket3	To Ket3 L	12 ABET II TO	9:19	6/15/2021 9:	use LD Chamber4
9 15	95.189	63.081	42.806	23.012	0.001	1	18	3	14	2	7	40,909	1800	44	1800		:38,777	-14T09:40:?	1800 2021-00	81	00€Ket3	To Ket3 L	12 ABET II TO	9:40	6/14/2021 9:4	use LD Chamber4
						0	0	0	0	0	0	0	1800	0	1800		:13.142	-17T10:02:1	1800 2021-06	81	00€Ket5	To Ket5 L	17 ABET II To	0:01	6/17/2021 10:	use LD Chamber
					0.001	0	0	0	0	0	0	0	1800	0	1800		:03.942	-16T10:08:0	1800 2021-00	81	OCKet5	To Ket5 L	17 ABET II TO	0:07	6/16/2021 10:0	use LD Chamber]
						0	0	0	0	0	0	0	1800	0	1800		17.649	-15T10:01:1	1800 2021-06	81	Of Ket5	To Kets II	17 ABET IL TO	0:01	6/15/2021 10:1	use ID Chamber1

A screenshot of a small portion of raw touchscreen data.

Python is a high-level versatile scripting language used for web development, data analysis and visualization, machine learning, desktop graphic user interfaces (GUIs), and software development.

Pandas is an open source data analysis library available on the Python platform. It has many useful features such as the DataFrame data structure, the ability to read and write data from multiple sources, and the ability to easily manipulate data.

Streamlined Analysis for Convoluted Rodent Touchscreen Data by Building a Customized Python Application

<u>Raymon Shi</u>^c, Harley A. Haas^c, Priya L. Kumar^c, Grace L. Bancroft^c, Ian F. Sanchez^c, Amelia J. Eisch^{a,b}, Sanghee Yun^{a,b}

^a Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA 19104 ^b Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA 19104 ^c University of Pennsylvania, Philadelphia, PA USA 19104

APPROACH

- Built in coding for merging raw data files, omitting duplicate data, extracting and calculating parameters from raw data, and producing a CSV file with the organized data using <u>Pandas</u>.
- Built a graphical user interface with a main menu, sub-menus per touchscreen test paradigm, and multiple buttons with different functionalities using the <u>Tkinter package</u>.
- Provided error handling by anticipating user input errors and providing descriptive explanations for the cause of errors using **Python** error exception handling.

A Brand New Automa Simply provide the application with raw save the organized CSV file in a 19.447 59.935 88.029 147 18.785 44.534 64.547 87. 9.379 50.53 70.942 103.599 5.101 50.2 64.627 99.631 279 36.403 52.281 151.767 167 48.213 135.065 158.636 ↑ 📑 → This PC → Documents → CHOP Related Work → TS Raw Data → Habituation → 🔹 🛧 📙 > This PC > Documents > Test 4/1/20 4/5/20 3/6/2021 2:21 PM 3/3/2021 6:03 PM Microsoft Exce 4/19/20 4/19/20 4/20/20 4/21/20 4/22/20 4/22/20 4/23/20 4/26/20 4/27/20 3/19/20 8/2/2021 12:21 AM Microsoft Excel C 💻 This PC test15 new version 8/2/2021 12:01 AM Microsoft Excel C 🚔 Network Folder: Hab 1 Save Cance **Analyzes Several Different Touck General TS Training** LDR Train and Enter the criteria as n days/n+1 days: Habituation Enter the min reversal number req: Habituation 2 Initial Touch (All) LD Train (All) Initial Touch (First Day) LD Train (Select Day) Must Touch (All) LD Probe (Last Day Difficulty All) Must Touch (First Day) LD Probe (Select Day) Enter the min reg trial amount LD Probe (Select ID) Enter the min % correct for first day: LD Probe (Select Block) Enter the min % correct for second day Punish Incorrect (All) LD Probe (Last Day All Avg) Punish Incorrect (First Day) LD Probe (Block Avg) Punish Incorrect (Last Day)

Specialized Data Sorting Based on Difficulty, Test Trial Day, and Animal ID

Main Menu

LD Probe (ID Avg)

NumberO	PercentCo	NumberO	Day	Туре	ID	Date
2	59.649	57	2	easy	1	5/18/2021
1	38.776	49	2	hard	2	5/18/2021
0	51.351	37	2	hard	3	5/18/2021
0	58.14	43	2	easy	4	5/18/2021
2	59.42	69	2	easy	5	5/18/2021
1	55.405	74	2	hard	6	5/18/2021
0	24.528	53	2	hard	7	5/18/2021
1	50	54	2	easy	8	5/18/2021
2	56.757	74	2	easy	9	5/18/2021
1	64.286	14	2	hard	10	5/18/2021
0	38.462	26	2	hard	11	5/18/2021
1	58.333	60	2	easy	12	5/18/2021
2	65.217	46	2	easy	13	5/18/2021
2	51.429	70	2	hard	14	5/18/2021
1	53.333	45	2	hard	15	5/18/2021
0	25	24	2	easy	16	5/18/2021
5	64.103	78	2	easy	17	5/18/2021
2	66.667	42	2	hard	18	5/18/2021
1	55.882	34	2	hard	19	5/18/2021
2	50	60	2	easy	20	5/18/2021
2	53.191	47	2	easy	21	5/18/2021
2	53.165	79	2	hard	22	5/18/2021
1	41.667	48	2	hard	23	5/18/2021
1	40	20	2	easy	24	5/18/2021
1	46.296	54	2	easy	25	5/18/2021
1	65.217	23	2	hard	26	5/18/2021
0	40.909	22	2	hard	27	5/18/2021
0	33.333	27	2	easy	28	5/18/2021
1	42.105	38	2	easy	29	5/18/2021
1	48	50	2	hard	30	5/18/2021

Punish Incorrect (Select Day)

Punish Incorrect (Select ID)

Sorting by uniculty separates the LDR **Probe difficulties (easy/hard) and the LDR** Train difficulty (intermediate).

SessionLe Nur 6/15/2021 6/15/2021 6/15/2021 1800 6/15/2021 1800 6/15/2021 1800 6/15/2021 1800 6/15/2021 1800 6/15/2021 6/15/2021 6/15/2021 1800 6/15/2021 6/15/2021 6/15/2021 1800 6/15/2021 1800 6/15/2021 6/15/2021 1800 6/15/2021 1800 6/15/2021 6/15/2021 6/15/2021 6/15/2021 6/15/2021 6/15/2021 6/15/2021 6/15/2021 1800 6/15/2021 1800 6/15/2021 1800 6/15/2021 1800 6/15/2021 1800 30

Sorting by day will show all the animal data rows for the selected day.

RESULTS

- Programmed a user-friendly app that can analyze different touchscreen tests (i.e. general touchscreen train, location discrimination train and test, extinction tests).
- Sorting output based on test parameters (i.e. difficulty, test day, animal ID, or block number) within the same test paradigm. • The app has the ability to have interchangeable criteria values
- for different test paradigms (i.e. completed days, omission #, or reversal #).
- The app explicitly handles input errors via descriptive error messages.

Image: Sector Annexed Process (Nerror Control of Control			-	hscr	een	Data	A	nalv	sis	Арр					×	
Image: Image: <thimage:< th=""> <thimage:< th=""> <thimage:< th="" th<=""><th></th><th></th><th></th><th></th><th>Gen</th><th>eral</th><th>Te</th><th>ouch</th><th>scre</th><th>een</th><th></th><th></th><th></th><th></th><th></th><th></th></thimage:<></thimage:<></thimage:<>					Gen	eral	Te	ouch	scre	een						
Image: 100 million Image: 10					och	1	D.	Train								
LD Probe Extinction Paradigm Parameterized Github Code Page 1/100000000000000000000000000000000000						-	0	rair	<u>'</u>							
Extinction Paradigm Parameterized John D Code Page Tree Section Number Overent C. Number O Totallito Totalisti Mareñe Macror Marino Section E Number O Number O Perent C. Peren							DP	rob	e							
Parameterized 1 0 <					Exti	nct	ion	Par	adig	gm						
bithub Code Page 1 Interned 100 4 4512 0 1 1452 1132 5544 6015 65126 1502 10 0 1542 1132 5544 1503 10 1						Para	m	eteri	zed							
Type Sessionle Number0 Percent(C Number0 Totallilla (Otallillan MeanRev MeanCor MeanInco Sessionle Sessionle Number0 Number0 Percent(C Percent(C Number0 Number0) 1 intermedi 1000 4 465115 1 <th></th> <th></th> <th></th> <th></th> <th>Git</th> <th>thuk</th> <th>0 0</th> <th>ode</th> <th>Pag</th> <th>ge</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					Git	thuk	0 0	ode	Pag	ge						
Type Session Revoluted Vorted Truck volumed Volumed Volumed Vorted Volumed Volumed Vorted Volumed Vorted Volumed Vol	T	Corrigation	mhana)orcento *	mbaro T -	1117-7	alBI-	Maarb	Maara	Meeri	Corriso	Corrigation	lumba-0**	nhor0 D	Co Dorror - 10	214
1 Intermedi 1800 31 32.238 0 2 66 1.275 7.0376 5.75667 1.800 32 0.42258 0.05259 0 4 1 Intermedi 1800 29 5.3172 1 9 117 1.120376 6.44767 5.54692 155232 204.077 27 2 0.59599 0 4 1 Intermedi 1800 25 36 0 6 52 1.01111 151752 5.2568 1.800 26 0.366 6 1 Intermedi 1800 25 30.769 0 7 81 140265 6.34325 4.05333 1500 22 0.07092 6 1.14113 1.152.055 1 10 110 1.25055 1.1313 1.15175 1.1333 1.15 1.151 1.153 1.15383 10 17 0.77776 0.217 1.15333 10 17 0.77778 0.217 1.5333 10 17 0.77778 0.217 15.333 10 17 0.77778 0.2177 <t< th=""><th>iype 1 intermedi 1 intermedi</th><th>5essionLe Nu 1800 1800</th><th>43 36</th><th>46.512 44.444</th><th>unperO fota 0 1</th><th>8 7</th><th>aisian) 99 62</th><th>1.6483 1.542</th><th>6.0151 11.3925</th><th>6.910261 5.9614</th><th>sessionLe 1800 868.643</th><th>931.357</th><th>umoerO Nur 44 19</th><th>0.4651 17 0.7368</th><th>CC PercentCc Da 16 42 0.117647</th><th>ay 1 2</th></t<>	iype 1 intermedi 1 intermedi	5essionLe Nu 1800 1800	43 36	46.512 44.444	unperO fota 0 1	8 7	aisian) 99 62	1.6483 1.542	6.0151 11.3925	6.910261 5.9614	sessionLe 1800 868.643	931.357	umoerO Nur 44 19	0.4651 17 0.7368	CC PercentCc Da 16 42 0.117647	ay 1 2
1 intermed 1800 20 40 0 8 51 1.5275 8.596625 6.52088 1800 21 0.38932 6 1 intermedi 1800 25 36 0 6 52 1.20111 1.113975 2.43994 1800 22 0.30762 6 1 intermedi 1800 25 5.25 1 10 10 1.52055 9.62792 16 16 0.70777 0.42857 9 1 intermedi 1800 27 5.555 1 11 16 1.11533 4.840733 6.5033 14.017 1.0 7.07777 0.47058 11 1 intermedi 1800 27 5.555 1 11 85 1.8418 4.80733 6.5033 10 17 0.7 0.47058 11 1 intermedi 1800 47 51.351 2 8 113 1.06737 4.0237 53.324 41.407.45 10 11 1.2 0.7308 1.0 1.2 0.7308 <td< td=""><td>1 intermedi 1 intermedi</td><td>1800 1800</td><td>31 29</td><td>32.258 55.172</td><td>0</td><td>2 9</td><td>66 137</td><td>1.2775 1.120375</td><td>7.0376 6.47675</td><td>5.758667 5.544923</td><td>1800 1595.923</td><td>204.077</td><td>32 27</td><td>0.3225</td><td>81 93 0</td><td>3</td></td<>	1 intermedi 1 intermedi	1800 1800	31 29	32.258 55.172	0	2 9	66 137	1.2775 1.120375	7.0376 6.47675	5.758667 5.544923	1800 1595.923	204.077	32 27	0.3225	81 93 0	3
1 100 16 50 1 2 41 1.23127 1.00377 607.175 12.225 9 7 0.77778 0.14827 7 1 intermedi 1800 26 50.756 1 10 11.2005 9.0707 80.231 16 16 0.775 0.37569 7 1 intermedi 1800 27 55.556 1 20 114 11.1333 45.46657 85.5041 94.4666 112.305 97.079 80.211 10 17 0.775 0.41 10 1 intermedi 1800 27 55.556 1 11 85 1.8484 4.00733 6.0037 10 11.6 5 1.41 11.3333 44.007 15.6333 10 17 0.47058 11 1 1.11	1 intermedi 1 intermedi	1800 1800	20 25	40 36	0	8 6	51 52	1.51725 1.201111	8.596625 13.91756	6.529083 24.36994	1800 1800		21 26	0.3809	52 36	5 6
1 intermedi 1800 32 56.25 1 10 110 15055 9.070.9 90.221 16 16 0.75 0.375 9 1 intermedi 1800 27 55.556 1 11 185 18418 400733 65.033 40.667 113 15 0.75 0.44 10 1 intermedi 1800 37 51.351 2 8 118 106777 0.2278 532224 443.01 155.938 11 25 0.41.818 0.36 12 1 intermedi 1800 40 47.5 1 6 102 1653105 5944105 658305 141.403 376.597 31 9 0.612903 0 15 1 intermedi 1800 40 47.5 1 6 102 1653105 59477 72.938 127.47 752.54 24 5 0.5 0.2 16 1 intermedi 1800 40 57.5 1 6 56 146579 9.02147 77.258 899.905 90.025 23	1 intermedi 1 intermedi	1800 1800	16 26	50 30.769	1 0	2 7	41 88	1.291375 1.401625	13.09037 6.334125	7.800375 4.085333	647.175 1800	1152.825	9 27	7 0.7777 0.3076	78 0.142857 92	7 8
Intermed 1000 2// 3000 1// 1// 000 1// 0.0700000 0000000 1// 0.0700000 0000000 0000000 00000000 000000000 00000000000 000000000000000 000000000000000000000000000000000000	1 intermedi 1 intermedi	1800 1800	32	56.25 55.556	1	10 20	110 114	1.520556	9.057056	10.21057 4.6655	997.079 855.034	802.921 944.966	16 12	16 0. 15 0.	/5 0.375 75 0.4	9
Intermed 1800 4 6 110 112 1902 110 141 00 141 00 141 100 111	1 intermedi 1 intermedi	1800	36	50 51 251	1	11 7 8	85 68	1.8418 1.186944	4.90/933 8.318667 4.022570	6.282944 5.322270	040.067 443.017 332.224	1103.933 1356.983 1247 245	10	1/ (25 0.8181 21 (0.470588 32 0.36	11 12
1 Intermedi 1800 2 44.828 1 4 57 84.32292 9.695077 722333 1237.457 520.543 4 5 0.5 0 1 17 1 intermedi 1800 44 56.098 0 7 71 3.989087 8.590478 7.576 1800 442 0.560976 1 17 1 intermedi 1800 40 57.5 1 6 56 1.65739 4.602391 5.47538 9.905 900.095 23 17 0.73913 0.3322941 18 1 intermedi 1800 37 15.216 0 7 2 1.97833 4.08333 5.74832 1800 3 0.51242 200 1 1.62142 200 1 1.62142 200 1 1.46224 5.33182 6.179 77.628 1027.372 16 13 0.5625 0.615385 21 1 1.6116 1.6017 2.216733 3.13784 497.599 79.559 8 18 0.7577.54 2.424 7	1 intermedi 1 intermedi	1800	42	61.905 47.5	1	10	113 116 102	1.125308 1.863105	4.976923 5.944105	4.36875	928.314 1421.403	871.686 378.597	23	19 0.7826 9 0.6129	09 0.421053 03 0	13 14 15
1 Intermedi 1800 40 57.5 1 6 56 1.465799 4.682391 5.479588 899.905 900.095 23 17 0.73913 0.332241 18 1 intermedi 1800 33 51.515 1 1 29 1.37059 6.616941 9.283688 1625.061 174.939 32 1 0.53125 0 19 1 intermedi 1800 29 58.621 1 2 34 1.246294 5.31882 61.79 772.628 1027.372 16 13 0.5625 0.615385 21 1 intermedi 1800 39 46.154 1 11 79 1.2005 4.611 50.1567 79.759 8 18 0.875 0.557.42 24 1 1.216 347053 73.313 10.62.02 13 0.5625 0.615385 21 1 11 19 1.2005 4.6115 50.157.95 79.537 18 0.875 0.557.14 12 1 19 1.42504 3.75716 50.477	1 intermedi 1 intermedi	1800 1800	29 41	44.828 56.098	1	4 7	57 71	8.432692 3.989087	9.695077 8.590478	7.225938	1237.457 1800	562.543	24	5 (0.5609	.5 0.2 76	15
1 intermedi 1800 37 16.216 0 7 29 1.197833 4.008333 5.714323 1800 38 0.162162 20 1 intermedi 1800 29 58.621 1 2 34 1.246244 5.351882 6.179 772.628 1027.372 16 13 0.5625 0.615385 21 1 intermedi 1800 39 46.154 1 11 79 1.2005 4.611 50.0517 49.2373 107.627 11 28 0.757 0.55556 22 1 intermedi 1800 49 53.061 2 8 96 1.184423 51.7564 6.15913 504.115 1049.8 14 28 0.75714 0.464286 24 2 intermedi 1800 43 58.14 2 11 19 1.42504 3.75716 53.6125 1002.362 8 23 0.75 0.434783 2 2 intermedi 1800 43 58.14 2 11 19 1.42504 3.75716 4.877167 150.454 1023.662<	1 intermedi 1 intermedi	1800 1800	40 33	57.5 51.515	1 1	6 1	56 29	1.465739 1.372059	4.682391 6.616941	5.479588 9.283688	899.905 1625.061	900.095 174.939	23 32	17 0.739 1 0.531	13 0.352941 25 0	18 19
1 intermedi 1800 33 57.576 2 2 40 1.261 94.7053 3.139766 497.959 79.559 8 18 0.875 0.555556 22 1 intermedi 1800 39 46.154 1 11 79 1.2005 4.611 5.015667 492.373 1307.627 11 28 0.727273 0.357.43 23 1 intermedi 1800 49 53.061 2 8 96 1.184423 5.17264 6.150913 504.115 1049.8 14 28 0.785714 0.464266 24 2 intermedi 1800 43 58.14 2 11 119 1.42504 3.75716 4.877167 150.454 1023.662 8 23 0.75 0.434783 2 2 intermedi 1800 43 58.14 2 11 119 1.42504 3.75716 4.877167 150.454 1023.662 8 23 0.75 0.434783 2 Intermedi 1800 43 58.14 2 11 119 1	1 intermedi 1 intermedi	1800 1800	37 29	16.216 58.621	0 1	7 2	29 34	1.197833 1.246294	4.008333 5.351882	5.714323 6.179	1800 772.628	1027.372	38 16	0.1621 13 0.56	52 25 0.615385	20 21
1 intermedi 1800 49 53.001 2 8 90 1.184425 5.172654 6.150913 504.115 1049.8 14 28 0.785714 0.4464286 24 2 intermedi 1800 31 48.387 1 16 107 2.21673 6.957467 5.326125 1500.579 299.421 24 7 0.541667 0.285714 1 2 intermedi 1800 43 58.14 2 11 119 1.42504 3.75716 4.877167 150.454 1023.662 8 23 0.75 0.434783 2	1 intermedi 1 intermedi	1800 1800	33 39	57.576 46.154	2	2	40 79	1.261 1.2005	9.470053 4.611	3.139786 5.015667	497.959 492.373	739.559 1307.627	8	18 0.8 28 0.7272	75 0.555556 73 0.357143	22 23
st Extinction Learning	1 intermedi 2 intermedi	1800 1800	49 31	53.061 48.387	2	8	96 107	1.184423	5.172654 6.957467	6.150913 5.326125	504.115 1500.579	1049.8 299.421	14 24	28 0.7857 7 0.5416	14 0.464286 57 0.285714	24
		re	eı	n '	Тe	S	t	P	aı	ra	di	g	m	S		
	SCI est						E	nter t	he crit	Ex	tin s n da	ctic	on l	_eai	ning	g
Enter the min correct trials amount:	SCI est						E	nter ti	ne crit	Ex teria a n corr	<mark>tin</mark> s n da	Ctic ys in a als am	on l		ning	g
Enter the min correct trials amount: Enter the min session length req:	SC est						E	nter ti nter ti Enter	he crit he min the m	Ex teria a n corr nin ses	tin s n da ect tria	ctic ys in a als am ength	on l		ning	g
Enter the min correct trials amount: Enter the min session length req: Acquisition (All)	SCI est						E	nter ti nter ti Enter	ne crit ne mir the m Ac	Ex teria a n corr nin ses quisiti	s n da ect tri ssion I ion (A	ys in a als am ength II)	on l		nin	9
Enter the min correct trials amount: Enter the min session length req: Acquisition (All) Acquisition (First Day)	st				7		E	nter ti nter ti Enter	he crit he min the m Acqui	Ex teria a n corr nin ses quisiti isition	s n da ect tri ssion I ion (A (First	ys in a als am ength II) Day)	on l		nin	g
Enter the min correct trials amount: Enter the min session length req: Acquisition (All) Acquisition (First Day) Enter the criteria as n days/n+1 days: Enter the criteria as n days/n+1 days:	st						E	nter ti nter ti Enter	he crit he min the m Acqui Ente	Ex teria a n corr nin ses quisiti isition r the c	s n da ect tri ssion I ion (A (First	ys in a als am ength II) Day)	row: ount: req: days/n+	-eai	ning	9
Enter the min correct trials amount: Enter the min session length req: Acquisition (All) Acquisition (First Day) Enter the criteria as n days/n+1 days: Enter the min omission amount: Enter the min omission amount:	st						E	nter ti Enter	he crit the min Ac Acqui Ente En	Ex teria a n corr nin ses quisiti isition r the c ater th	s n da ect tri ision I (First criteria e min	ys in a als am ength II) Day) a as n c omiss	on l row: ount: req: days/n+ ion am	-Cal	nin.	9
Enter the min correct trials amount: Enter the min session length req: Acquisition (All) Acquisition (First Day) Enter the criteria as n days/n+1 days: Enter the min omission amount: Extinction (All) Extinction (All)	st						E	nter ti Enter	he crit the min Ac Acqui Ente En	Ex teria a n corr nin ses quisiti isition r the c iter th	s n da ect tri ssion I ion (A (First criteria e min Extin	ys in a als am ength II) Day) a as n c omiss ction (on l row: ount: req: days/n+ ion am (All)	-Cal	ning	9
Enter the min correct trials amount: Enter the min session length req: Acquisition (All) Acquisition (First Day) Enter the criteria as n days/n+1 days: Enter the min omission amount: Extinction (All) Extinction (First Day) Extinction (First Day)	st						E	nter ti Enter	he crit the min Ac Acqui Ente En	Ex teria a n corr nin ses quisiti isition r the c ater th Ex	s n da ect tri ssion I ion (A (First criteria e min Extin tinctio	ys in a als am ength II) Day) a as n c omiss ction (on (Firs	on l row: ount: req: days/n+ ion am (All) st Day)	-eai	ning	9
Enter the min correct trials amount: Enter the min session length req: Acquisition (All) Acquisition (First Day) Enter the criteria as n days/n+1 days: Enter the min omission amount: Extinction (All) Extinction (First Day) Extinction (First Day) Extinction (Last Day)	SC est						E	nter ti Enter	he crit the min Ac Acqui Ente En	Ex teria a n corr nin ses quisiti isition r the c nter th Ex Ex	s n da ect tri ission I ion (A (First criteria e min Extin tinctio inctio	ys in a als am ength II) Day) a as n c omiss ction (on (Firs on (Las	on l row: ount: req: days/n+ ion am (All) st Day) st Day)	-eai		9

nberO	PercentCc Nu	NumberO	Day	Туре	ID	Date	NumberO	PercentCc	berO
4	57.895	57	1	easy	21	5/17/2021	0	45	40
2	53.191	47	2	easy	21	5/18/2021	2	42.222	45
0	33.333	27	3	hard	21	5/19/2021	0	14.286	21
0	59.375	32	4	hard	21	5/20/2021	0	42.5	40
3	60.784	51	5	easy	21	5/21/2021	2	50.943	53
2	55.385	65	6	easy	21	5/24/2021	1	40.58	69
1	54.286	35	7	hard	21	5/25/2021	1	49.091	55
1	34.884	43	8	hard	21	5/26/2021	2	54.545	44
4	61.765	68	9	easy	21	6/14/2021	1	52.941	68
1	29.63	27	10	easy	21	6/15/2021	1	52,381	21
0	58.824	34	11	hard	21	6/16/2021	1	57,143	28
1	35.294	34	12	hard	21	6/17/2021	1	46,939	49
2	45.455	44	13	easy	21	6/18/2021	2	41.026	39
3	60.317	63	14	easy	21	6/21/2021	1	42 593	54
0	37.5	24	15	hard	21	6/22/2021	1	50	36
0	36	25	16	hard	21	6/23/2021	1	19	25
2	68.182	44	17	easy	21	6/24/2021	1	90	45
2	56.522	46	18	easy	21	6/25/2021	1	57.770	24
1	45.283	53	19	hard	21	6/28/2021	2	52,541	54
2	50.909	55	20	hard	21	6/29/2021	3	52.032	57
3	58.182	55	21	easy	21	6/30/2021	1	29.63	27
4	71.014	69	22	easy	21	7/1/2021	2	56.962	/9
2	50	66	23	hard	21	7/2/2021	2	52.83	53
2	54.286	70	24	hard	21	7/5/2021	0	56	25
5	59.459	74	25	easy	21	7/7/2021	3	57.778	45
4	70.769	65	26	easy	21	7/8/2021	0	10	10
2	58.182	55	27	hard	21	7/9/2021	1	62.791	43
2	47.541	61	28	hard	21	7/12/2021	0	37.5	24
5	61.667	60	29	easy	21	7/13/2021	0	32	25
6	70.13	77	30	easy	21	7/15/2021	1	42.857	56

Sorting by animal ID will show all the data rows for the selected animal ID

		Certa	ain
Ente	er the min reg trial amount:		
Enter t	he min % correct for first day:		
ter the	e min % correct for second day:		
	Enter the min req trial amoun	t:	
P	Enter the min % correct for first	day:	_
P	Enter the min % correct for secon	d day:	
Pu	Punish Incorrect (First Day)	_	
P	Punish Incorrect (Last Day)		
	Punish Incorrect (Select Day)		8
	Punish Incorrect (Select ID)		5
		the follow	
Fo	or Punish Incorrect, the min each day ar	nimun e inter	n tria
Fo	or Punish Incorrect, the min each day ar		n tria cha
Fo	or Punish Incorrect, the mineach day are	nimun e inter	e u
Fo	or Punish Incorrect, the min each day are	nimum e inter	e u
Enter	or Punish Incorrect, the min each day are the criteria as n days in a r the min correct trials amo	nimun e inter If the	e u
Fo Enter Enter Enter	or Punish Incorrect, the min each day are the criteria as n days in a r the min correct trials amo er the max session length r	nimun e inter If the row: unt: eq:	
Fo Enter Enter Enter	or Punish Incorrect, the min each day are the criteria as n days in a r the min correct trials amo er the max session length re Acquisition (All)	nimum e inter If the ow: unt: eq:	e u
Fo Enter Enter Enter	The criteria as n days in a rest of the min correct trials amo er the max session length re Acquisition (All)	nimum e inter If the row: unt: eq:	
Enter Enter Enter	The criteria as n days in a r Acquisition (All)	nimum e inter If the row: unt: eq:	
Enter Enter Enter Enter Enter	The criteria as n days in a n Acquisition (All)	nimun e inter If the row: unt: eq:	
Enter Enter Enter Enter Enter Enter	The criteria as n days in a r Acquisition (All)	nimum e inter If the row: unt: eq: unt: eq:	

Enter the max session length req:	
Acquisition (All)	

Conclusions/Future Directions

- A formal automated process for cleaning touchscreen data can significantly improve productivity within the touchscreen community.
- The creation of a manuscript to introduce the automated process with the rest of the touchscreen community.
- (i.e. MouseBytes)
- (raymon-shi)

We acknowledge the support of former and current members of the Eisch Lab. SY was supported by an NIH Institutional Training Grant (MH076690, PI: CA Tamminga), NNX15AE09G (PI AJE), MH107945 (PI AJE), a 2018 PENN McCabe Pilot grant, a 2019 IBRO travel grant, and is currently supported by 2019 NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation, 2020 a PENN Undergraduate Research Foundation grant, and a 2021 NASA HERO grant (80NSSC21K0814)."

- References (2021): 107443. https://doi.org/10.1038/nprot.2013.124
- Lafayette Instruments, . 80614-LD Location Discrimination (LD) Task for Mouse Touch Screen Systems and ABET II (2 x 6 Mask Version). 2011

IMPLICATION

- Significantly reduced the amount of time and resources used for the touchscreen data analysis.
- Minimized human errors produced during manual calculations.
- Enabled easy data sharing with the organized output as a CSV file.

terchangeable Test Criterias

• Sharing the application and code with the open-science touchscreen data platform

• The code is open-source and available for anyone on my personal GitHub

ACKNOWLEDGEMENTS/REFERENCES

• Palmer, Daniel, et al. "Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease." *Neurobiology of Learning and Memory* 182 Oomen, C., Hvoslef-Eide, M., Heath, C. et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat Protoc 8, 2006–2021 (2013). • Beraldo, Flavio H, et al. "MouseBytes, an Open-Access High-Throughput Pipeline and Database for Rodent Touchscreen-Based Cognitive Assessment." ELife, vol. 8, 2019, doi:10.7554/elife.49630