Microbial Activity in Anthracite Contaminated Soils

BACKGROUND & RATIONALE

- Extensive coal mining in eastern Pennsylvania anthracite region
- Coal processing wastewater discarded into waterways, and fine coal waste products discarded into piles (culm banks), causing infiltration into local streams and ecosystems
- The Schuylkill and Lehigh valleys contain alluvial soils with high concentrations of geogenic carbon from infiltration
- Impact of anthracite contamination on microbial activity \bullet and carbon cycling in soils currently unknown
 - Anthracite contamination may inhibit microbial activity and reduce respiration rates
 - Increased carbon concentrations may stimulate microbial activity and increase respiration rates
- Respiration rates of soils impacted by spatial availability of organic matter in soil matrix and chemical characteristics of organic matter
- **Objective: Quantify microbial activity and** decomposability of organic matter in soils by measuring respiration rates of soils relative to soil mass and C mass in a lab incubation

STUDY SITE & SAMPLE COLLECTION

- Samples taken from Schuylkill River floodplain in State Game Lands No. 234 in Montgomery County, PA
- Sample sites chosen with increasing distance from Schuylkill River (fig. 4)
 - Pit 4: Closest (highest anthracite contamination)
 - Pit 1: Farthest (lowest anthracite contamination)
- Samples taken from each soil horizon in each pit, identifiable in soil profiles (fig. 1)

FIGURE 1: Soil profiles of pits 1-4 and their horizons

Jazmine Rud¹, Elizabeth Williams¹, Matthew Ricker², Alain F. Plante¹

¹University of Pennsylvania, Department of Earth & Environmental Science; ²North Carolina State University, Crop and Soil Sciences

METHODS

- After collection, soil samples air dried and sieved to <2mm
- 2 repetitions of 3 sets of 21 5ml soil samples measured and rewet to 55% water-filled pore space (WFPS) (fig. 3)
 - > 55% WFPS allows for optimal microbial activity
- Samples incubated over period of 20 days
- Headspace air sampled incrementally throughout incubation
- Respiration rates quantified by measuring CO_2 concentrations in sample headspace air with LICOR LI-7000 Infrared Gas Analyzer (fig. 2)

FIGURE 2:

LICOR LI-7000 with drierite column for H_2O removal and magnesium perchlorate column for CO_2 removal

FIGURE 3:

Soil samples: 3 replications of 21 samples and 2 blank control tubes

FIGURE 4:

Location of

State Game

and proximity

to Schuylkill

River

REFERENCES

Lehmann, J. (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13(8), 529–534. Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., & Sierra, C. A. (2020). Decomposability of soil organic matter over time: The soil incubation database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data, 12(3), 1511-1524 Stinchcomb, G. E., Stewart, R. M., Messner, T. C., Nordt, L. C., Driese, S. G., & Allen, P. M. (2013). Using event stratigraphy to map the anthropocene – an example from the historic coal mining region in eastern pennsylvania, USA. Anthropocene, 2, 42-50.

Towne, C. (2012). Stone Coal. In A River again: The story of the Schuylkill River project (pp. 17–23). essay, Delaware Riverkeeper Network.

nple	µg Carbon	Sample	µg Carbon
1 0-22 cm	657.28	Pit 3 0-11 cm	917.51
1 22-42 cm	268.12	Pit 3 11-26 cm	447.48
1 42-64 cm	135.71	Pit 3 26-36 cm	367.29
1 64-92 cm	130.34	Pit 3 36-46 cm	305.55
1 92-122 cm	83.54	Pit 3 46-73 cm	234.57
2 0-23 cm	485.23	Pit 3 73-91 cm	201.75
2 23-57 cm	323.57	Pit 4 0-14 cm	1711.01
2 57-88 cm	261.95	Pit 4 14-36 cm	431.50
2 88-122 cm	152.14	Pit 4 36-49 cm	359.29
		Pit 4 49-63 cm	386.98
		Pit 4 63-73 cm	426.40
		Pit 4 73-104 cm	316.64

- community structure

