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Introductior Results (cont)

Backgrou nd » Various thresholds were assessed as possible subtype thresholds for each Pairwise T-test Results

, , , biomarker.
Key biomarkers of Alzheimer’s disease (AD) can be used to measure
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_ _ o _ _ » For each biomarker, subjects were split into the three groups and GWAS
the progression of the iliness within a particular patient.

One particular area of interest has been the subtyping of such
biomarkers or, in other words, identifying a threshold such that all
patients who meet such threshold can be determined to be at high risk
for the disease.

* We used one subtype to define other biomarkers and created violin plots of all 16

analysis was used to determine whether each subtype yielded significant

genetic (SNP) associations.

biomarkers and their controls.
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* A pairwise t-test was performed between each biomarker’s subtype and control
to determine whether the subtype used to define the groups produced
significant groupings in other biomarkers.

Subtyping allows for early detection of AD and possible treatment
Intervention.
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We want to define subtypes for 16 key biomarker candidates of AD and
examine whether proposed subtypes produce significant genetic (SNP)
bases.
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Figure 9. Enlarged violin plot for TAU
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Figure 3. Example histograms for AvV45
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* Alzheimer’s Disease Neuroimaging Initiative (ADNI) data: There were a _ _ *
total of 1576 participants and 565,373 SNPs assessed for significant Figure 4. Example histograms for FDG
associations.
Biomarker candidates: AvV45, FDG, PTAU, TAU, ABETA, CDRSB,
ADAS13, MMSE, RAVLT.learning, FAQ, Ventricles, Hippocampus,
WholeBrain, Entorhinal, Fusiform, and MidTemp
Covariates: Patient age, gender, education, and subtype group (0, 1, or
-9) were used.

Figure 10. Most significant t-test results for possible associations
between various biomarkers

Conclusion

Out of the 16 biomarker candidates subtyped and assessed, we
determined that the threshold of 15 for FAQ yielded the most significant
genetic associations and could be further explored as a possible
Indication of AD.

Our findings also indicate that a few biomarkers could possibly be
associated with others and used to indicate the development of AD,
such as that between FDG and MidTemp or ABETA and WholeBrain.
Having focused on GWAS and biomarker evaluation in this project, In
the future, we could move to analyze survival outcome as well.

We could also use other data to back our findings In this study and use
other strategies such as ones involving machine learning to subtype
patients.
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Figure 5. Directionality results (L: larger values signify AD progression,
S: smaller values signify AD progression)
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GWAS analysis:
« We used a p-value significance threshold of 5*10-° to determine
whether a significant SNP association existed after running PLINK.
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Figure 7. Subtyping results of all biomarkers




