

Using non-invasive brain stimulation in the treatment of chronic post-stroke aphasia: a preliminary analysis of TMS as a supplement to constraint-induced language therapy

ClinicalTrials.gov Identifier: NCT03651700

¹Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA

Background

- Aphasia, an acquired loss of language abilities, affects nearly 30% of individuals with strokes and nearly I million Americans (see NINDS.NIG.gov)
- Non-invasive brain stimulation to the right inferior frontal gyrus (IFG) has been used as a supplementary tool to speech language therapy with lasting and enhanced benefits in language-based tasks (Martin et al., 2004, Naeser et al., 2005, Nissim et al. 2020)
- The efficacy of TMS remains unclear due to the lack of large-scaled, controlled randomized clinical trials
- This research reports preliminary findings from a randomized clinical trial assessing the efficacy of TMS as a supplement to CILT Aims
- Demonstrate that Transcranial Magnetic Stimulation (TMS) paired with Constraint Induced Language Therapy (CILT) will improve language performance more than sham TMS and CILT

Methods

- Double-blind, randomized in a 2:1 ratio to TMS with CILT or sham TMS with CILT
- One Hz TMS at 90% motor threshold delivered to the right IFG for 20 minutes in 10 sessions over 2 weeks; CILT language therapy will be provided for 60-90 minutes after each TMS session
- Change (>5) from baseline in the Western Aphasia Battery Aphasia Quotient (WAB-AQ) at 3- and 6-months post-treatment will serve as

the primary outcome measure

Screening Visit	Baseline 1	Baseline 2	Baseline 3	Baseline 4	Treatment 1-10	Follow-up 1	Follow-up 2 & 3	Follow-up 4, 5, 6
Visit 1	Visit 2	Visit 3	Visit 4	Visit 5	Visit 6-16	Visit 17	Visit 18-19	Visit 20-22
Criteria -Demographics History -Medical History -Medical Intake -Geriatric Depression		-WAB -Ruff Figural Fluency Test -Word and non- word repetition -Cinderella Story -CILT baseline	-Leftover Testing -Baseline will continue into 4th and 5th visits if necessary		Real or Sham TMS (20 min, 1hz at 90% MT) + CILT	-CILT probe	3-months: -same as Baseline 1 & 2	6-months: -same as Baseline 1 & 2 -MRI scan
120 minutes	120-180 minutes	120-180 minutes	60-180 minutes	120 minutes	90-120 minutes	60 minutes	120-180 minutes	120-180 minutes

Table I. Demographic of Patients

Demographics & Study Criteria

- e _'	eft hemi WAB-A	subject sphere	s with a sing cerebral infa es between	rct -Histo 85Previo	ole infarcts ry of substan ous head trai	
	.0			,	iatric illness	
t	o study Give inf		ion >6mo pr consent	CNS -Histo	ry suggestive	
	Subject ID	Sex	Age at Enrollment	Years of Education	Months Post-Stroke	Baseline WAB Aphasia Classification
	1	Male	53	12	30	Broca's
	2	Male	60	14	95	Anomic
	3	Male	76	16	131	Wernicke's
	4	Male	55	12	98	Broca's
	5	Male	58	16	15	Conduction
	6	Female	69	12	52	Broca's
	7	Male	58	13		Global
	8	Male	63	14	183	Broca's

13 Conductio

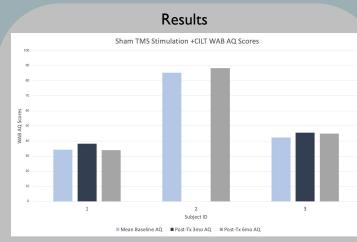


Figure 2. Bar graph showing WAB performance at baseline, 3-mo post-treatment, and 6-mo posttreatment for sham TMS+CILT group. * indicates a patient with significant improvement in performance (criterion: >5 increase). No individuals demonstrated significant aphasia improvement..

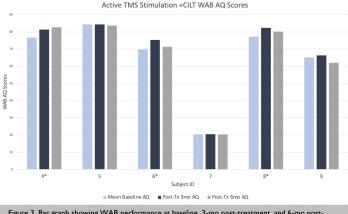


Figure 3. Bar graph showing WAB performance at baseline, 3-mo post-treatment, and 6-mo posttreatment for active TMS+CILT group. * indicates a patient with significant improvement in performance (criterion: >5 increase). Subjects 4, 6, and 8 demonstrated significant aphasia improvements

WA	AB-AQ	9 Sub-	score	S
	Sham gr	oup WAB sub-	scores	
Subject ID		Mean Baseline	3-month Follow-up	6-month Follow up
1	Spontaneous Speech	6	7	7
	Comprehension Repetition	4.975	5.55	4.6
	Naming	3.8	4.2	3.3
	AQ	34.25	38.3	34
2	Spontaneous Speech	15		15
	Comprehension	9.85		10
	Repetition	9		9.2
	Naming	8.85		10
	AQ	85.4		88.4
3	Spontaneous Speech	9	9	10
	Comprehension	4.7	5.9	4.8
	Repetition	1.2	1.4	1.8
	Naming	6.3	6.5	5.9

Table 2. WAB AQ sub-scores for sham TMS+CILT

47.4

45.6

45

	Active g	roup WAB su	b-scores	
		Mean	3-month	6-month
ubject ID		Baseline	Follow-up	Follow up
	Spontaneous			
4	Speech	12	14	15
	Comprehension	9.6	9.8	9.7
	Repetition	7.8	8.1	7.8
	Naming	8.95	8.8	8.8
	AQ	76.7	81.4	82.6
	Spontaneous			
5	Speech	19	19	19
	Comprehension	8.45	8.7	8.6
	Repetition	6.3	5.7	5.3
	Naming	8.4	8.8	8.9
	AQ	84.3	84.4	83.6
	Spontaneous			
6	Speech	13	15	12
	Comprehension	8.7	9.1	9.05
	Repetition	5.3	6	6.7
	Naming	7.9	7.6	7.9
	AQ	69.8	75.4	71.3
	Spontaneous			
7	Speech	3	3	3
	Comprehension	6.725	7.2	7.15
	Repetition	0.35	0	0
	Naming	0	0	0
	AQ	20.15	20.4	20.3
	Spontaneous			
8	Speech	14.5	15	15
	Comprehension	9.85	10	9.5
	Repetition	5.5	7.7	6.9
	Naming	8.7	8.5	8.7
	AQ	77.1	82.4	80.2
	Spontaneous			
9	Speech	14	15	14
	Comprehension	7.9	8.1	7.8
	Repetition	4.55	3.6	3.6
	Naming	6.15	6.5	5.6
	AQ	65.2	66.4	62

Table 3. WAB AQ sub-scores for active TMS+CILT group.

Acknowledgements This work was supported by a UPenn CURF grant and Dr. Roy H. Hamilton, MD, MS in collaboration with Denise Y. Harvey, PhD, Leslie Hanlon Vnenchak, MA, CCC-SLP and other members of the Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA

Analysis

- All individuals scored higher at the 3-mo post-treatment timepoint than their mean baseline scores
- \therefore In the sham TMS+CILT group, no individuals had a >5 increase in WAB-AQ scores, indicating a variable response to CILT alone
- Response to TMS was variable in the active TMS+CILT group, with 3 out of 6 active participants showing significant improvements in WAB-AQ scores
- Severity at baseline may be a factor determining response to TMS; individuals with moderate severity (baseline AQ's 60-80) seem to be more likely to respond compared to patients with more severe aphasia
- Patients with less severe aphasia may be less likely to respond because there is less "room" for improvement, characteristic of the "ceiling effect."

Conclusion

- Collectively, this data supports the efficacy of TMS as a supplemental tool to Constraint Induced Language Therapy in the treatment of chronic post-stroke aphasia
- ✤ A larger sample size is needed to conduct a more in-depth statistical analysis and explore the influence of factors such as age, infarct location, aphasia severity, and time since stroke onset.
- Future work will look at fMRI imaging and robust machine learning techniques to identify changes in the strengths of connections between nodes in the language network to address the effects of TMS and CILT on brain organization that are associated with beneficial response to treatment.

References

Martin PI, Naeser MA, Theoret H, et al. Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang. 2004;25(2):181-191. doi:10.1055/s-2004-825654

Naeser MA, Martin PI, Nicholas M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang. 2005;93(1):95-105. doi:10.1016/j.bandl.2004.08.004 Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain

stimulation. Brain Lang. 2011;118(1-2):40-50. doi:10.1016/j.bandl.2011.02.005 Harvey DY, Podell J, Turkeltaub PE, Faseyitan O, Coslett HB, Hamilton RH. Functional Reorganization of Right Prefrontal

Cortex Underlies Sustained Naming Improvements in Chronic Aphasia via Repetitive Transcranial Magnetic Stimulation. Cogn Behav Neurol. 2017;30(4):133-144. doi:10.1097/

Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother. 2017;17(11):1091-1107. doi:10.1080/14737175.2017.1373020

Correspondence

Jeffry Alfaro, Candidate for B.A. in Neuroscience, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104 Email: jalfaro@sas.upenn.edu