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Introduction Applications of Discrete Morse Theory Connections
Over the summer I investigated the potential connections 
between two topics in mathematics: discrete Morse theory 
and finite topological spaces.

The reason it is worth looking at how these two areas are 
related is because finite topological spaces can be analyzed 
using structures called simplicial complexes, and discrete 
Morse theory was specifically developed to study these 
objects. Simplicial complexes are spaces that are formed 
from n-simplices, which can be thought of as generalized 
triangles. Here are some lower dimensional examples:

And here are two examples of simplicial complexes:

Discrete Morse theory has applications in areas like 
combinatorics, topological data analysis, and computer
science. This stems from the fact that it helps us find smaller 
spaces that are equivalent to the ones we care about.

For example, given a topological data set in which we have 
many data points scattered around a space, we can connect 
the points that are close to each other to form a simplicial 
complex. Then we can take this simplicial complex and 
analyze the topology to gain information about the geometry 
of our data (this is called persistent homology). Discrete 
Morse theory can be used in such an algorithm to make it 
much more efficient.

Using the same ideas developed in discrete Morse theory, 
one can develop a discrete Morse theory on certain classes 
of finite topological spaces.

For the theory to apply, we need our space to satisfy certain 
properties which, in a simplified sense, says that our finite
topological space is formed by added spheres of increasing 
dimension.

Given that we have these properties, we can define a 
discrete Morse function on our finite topological space and 
find something equivalent to a gradient vector field. This lets 
us use the same methods as before to find a simpler space 
that is equivalent to our original one. The idea is that this
can help us think about or calculate things relating to our 
finite topological space.

Unfortunately, the properties are somewhat strict, but there 
are still certain classes of spaces that satisfy them. For 
example, there are spaces called finite manifolds that might 
be studied in combinatorics.
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Discrete Morse Theory
Discrete Morse theory is a relatively recent development 
(mid 1990s) which can be thought of as a combinatorial 
analog to (smooth) Morse theory, which is where one 
analyzes the topology of differentiable manifolds using 
special smooth functions.

In discrete Morse theory, you study the topology of a 
simplicial complex by defining a discrete Morse function on 
its simplices. Using this function, you can obtain a gradient 
vector field which tells you how you can collapse your 
simplicial complex to get a new space that is effectively the 
same (homotopy equivalent). Often this simplifies the space 
and makes it easier or more efficient to study. Here is an 
example of such a function and how it leads to a collapse:

Finite Topological Spaces
A finite topological space is a space that contains a finite 
number of points. This is different than the spaces
mathematicians typically study (for example, spaces like the 
real plane, a circle, or a torus all contain infinite points). 

However, despite only containing a finite number of points, 
the topology of these spaces can actually be quite 
interesting. In fact, given most well-behaved spaces (all 
CW-complexes specifically), there is a finite topological 
space that is weakly equivalent to it (weak homotopy
equivalent). For example, a circle can be modeled using 
only four points, and a sphere with six points!

In addition, there is a way to get a simplicial complex that is 
weakly equivalent to a given finite topological space, and 
vice versa.

Finite topological spaces that satisfy something called the T0
property are particularly interesting because they can be 
represented using a partially ordered set. In fact, all partially
ordered sets represent a unique finite 
topological space. This makes it easier to 
think about the space and lets us use 
tools from combinatorics. Here is an 
example of a partially ordered set 
representing a space with five points:


