

Motivation

- Lung transplants have one of the highest 1-year mortality rates among all major organ transplants in the country
- Using data about lung recipients and donors, we are hoping to improve the matching process
- This is done by using the lung allocation score (LAS) which is used to prioritize waiting list candidates based on a combination of waitlist urgency and post-transplant survival.
- The available data disproportionately contains certain race-gender groups of the population so we are hoping to leverage Machine Learning concepts to more accurately model the LAS scores of minority groups of the population

Findings

ORIGINAL DATA	MICE DATA	
Fold 1	Fold 1	
training loss 5.552	training loss 1.449	
training loss 1.239	training loss 0.839	
training loss 0.866	training loss 0.642	
training loss 0.797	training loss 0.426	
training loss 0.777	training loss 0.378	
Loss for fold 1: 0.725	Loss fo	or f
Fold 2	Fold 2	
training loss 5.521	training loss 2.764	
training loss 1.124	training loss 0.897	
training loss 0.855	training loss 0.806	
training loss 0.763	training loss 0.623	
training loss 0.745	training loss 0.430	
Loss for fold 2: 0.708	Loss fo	or f
Fold 3	Fold 3	
training loss 3.943	training loss 1.644	
training loss 1.050	training loss 0.822	
training loss 0.817	training loss 0.621	
training loss 0.791	training loss 0.444	
training loss 0.767	training loss 0.408	
Loss for fold 3: 0.770	Loss fo	or f
Fold 4	Fold 4	
training loss 4.548	training loss 1.281	
training loss 1.314	training loss 0.819	
training loss 0.931	training loss 0.618	
training loss 0.782	training loss 0.371	
training loss 0.758	training loss 0.400	
Loss for fold 4: 0.708	Loss fo	or f
Fold 5	Fold 5	
training loss 2.773	training loss 1.466	
training loss 0.945	training loss 0.834	
training loss 0.766	training loss 0.564	
training loss 0.735	training loss 0.418	
training loss 0.701	training loss 0.372	
Loss for fold 5: 0.888	Loss fo	or f

The results on the left are the loss for each fold for the complete data from the original dataset without imputation and on the left are the results of the model on the imputed data.

Exploring the Lung Transplant System with the MICE imputation methods and ML modelling

Kaya Panchalingam SEAS 2023 **GRASP** Labs School of Engineering and Applied Science

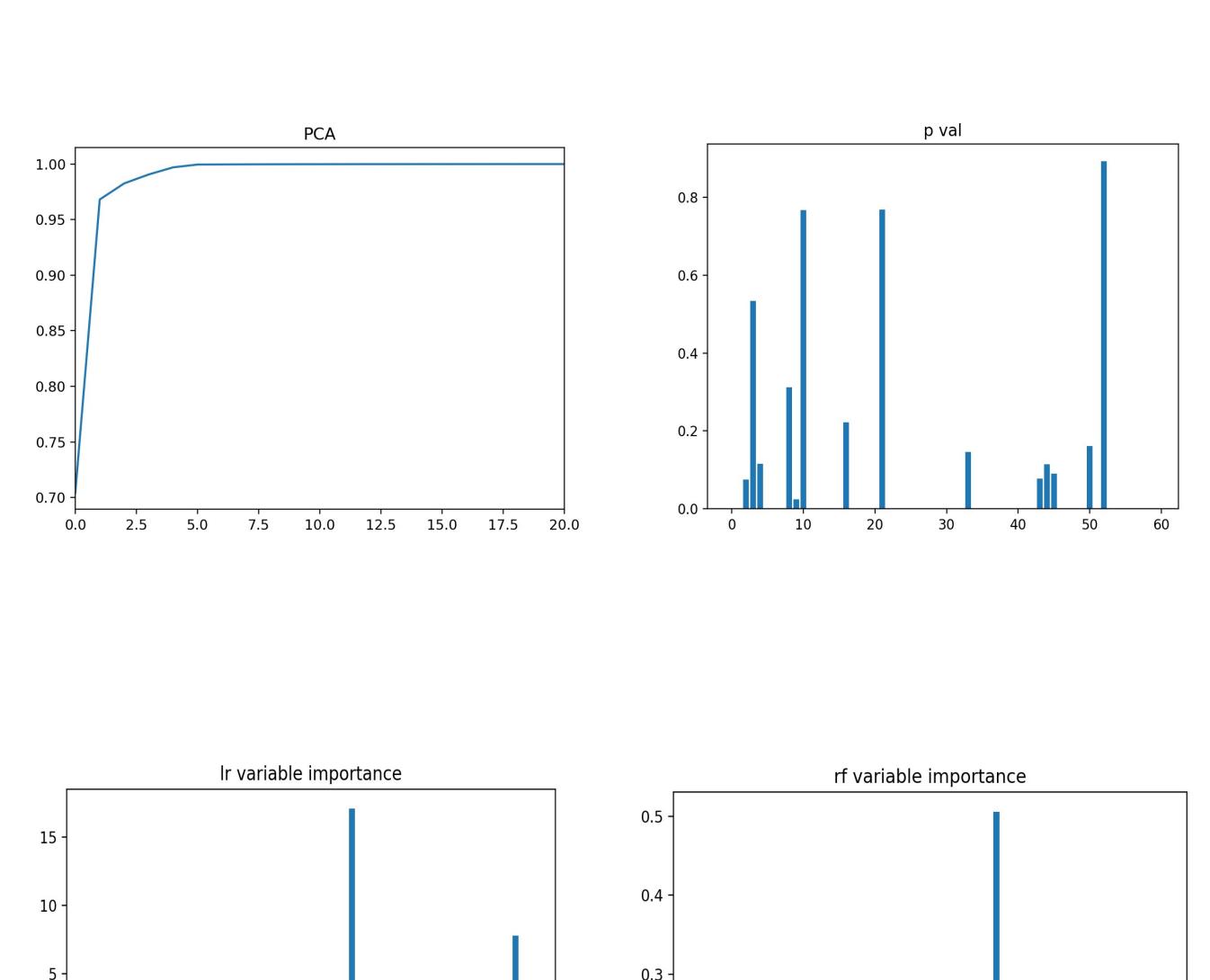
Calculating the Lung Allocation Score

The steps include:

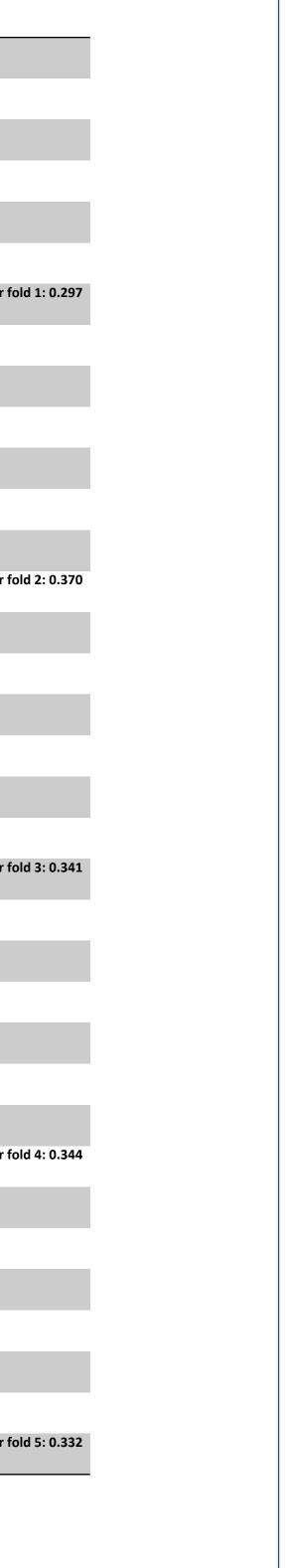
10

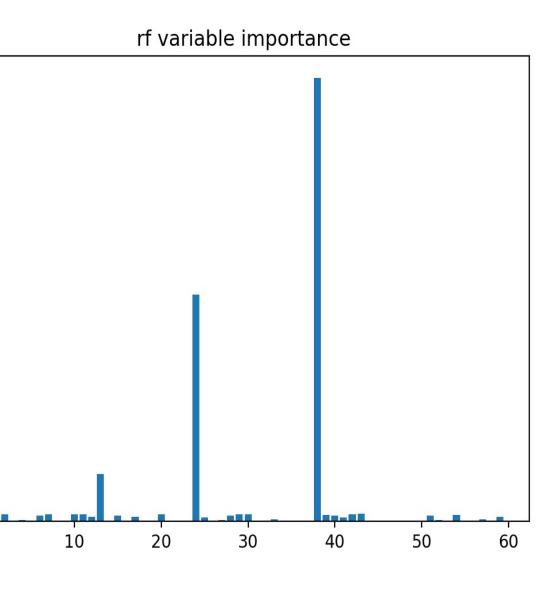
- Calculate the waiting list survival probability during the next year
- Calculate the waitlist urgency measure
- Calculate the post-transplant survival probability during the first post-transplant year
- Calculate the post-transplant survival measure
- Calculate the raw allocation score
- Normalize the raw allocation score to obtain the LAS.

Results



50



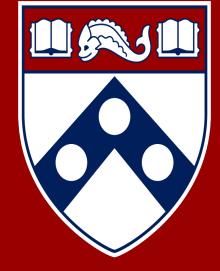


- \bullet
- stabilize.
- •Ran a fully connected neural network (FFN) with 5-fold cross-validation to regress the LAS. We have 60 features and used to fully connected layers with 120 perceptrons and an output of 1 value which is the regressed LAS score. We used ReLU as the activation function.

Conclusion and Next Steps

- of accuracy

- http://d2l.ai/, chapters 4-7
- Adaption
- Image Classification



Methodology

• Exploration of data using Variable Importance. This measured the statistical significance of each variable in the data with respect to its effects on a model.

•Ran MICE (multivariate Imputation by Chained Equations) on the incomplete data set to impute values that were missing. This method will first set placeholder values for missing values in the columns (using the mean value of the column for instance). Then it will remove all the placeholder values for one column but keep them for all other columns and regress the missing values for the certain feature. We repeat this process for each feature and then repeat this whole process a few times until the values

•Ran PCA on the imputed data set to capture most of the variance of the dataset with fewer dimensions.

•The model managed to predict the score with a high degree

•Next, we are looking to implement few-shot learning methods for subgroups of the data based on the age group to see if the model works better. This would be exploring if retraining the model on a subgroup of the data, would lead to higher accuracy in predicting the LAS for that subgroup

References

https://unos.org/wp-content/uploads/unos/Lung_Calculation.pdf

https://arxiv.org/abs/2103.12857, Embracing Disharmony in Medical Imaging: A simple and Effective Framework for Domain

https://arxiv.org/pdf/1909.02729.pdf, A Baseline for Few-Shot