

Introduction

- Zeolite, an aluminosilicate, has a unique porous structure and pH-sensitivity that allows for the controlled uptake and release of anticancer drugs.
- Conventional anticancer drugs face drawbacks, such as poor specificity and high toxicity, which can lead to systemic toxicity for healthy tissues [1,2].
- Zeolite can mitigate the drugs' drawbacks by selectively releasing them in the acidic tumor microenvironment.
- We reviewed *in vitro* and *in vivo* studies that evaluated the potential enhancement of various anticancer drugs using zeolites as a drug delivery nanoplatform.

Methods

- **Databases:** PubMed, Scopus, Embase, Web of Science, and grey literature databases.
- No limits were set on the year or language of the publication.
- Inclusion Criteria: Full-text studies that pertained to the therapeutic effect of zeolites as a drug delivery system towards cancers.
- **Exclusion Criteria**: Studies that only reported the effect of pure zeolites on cancers. Exclude case reports, abstracts, notes, short communications, observational studies, and review articles/letters
- The initial search yielded 1279 studies. After exclusion of duplicates and application of inclusion and exclusion criteria, 53 full-text articles were selected.

Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review

Jessica Hao¹, Ivana Stavljenic Milasin², Zeynep Batu Eken³, Marinka Mravak-Stipetic⁴, Kresimir Pavelic⁵, Fusun Ozer⁶

Contact: haoje@sas.upenn.edu

Results

- Within the 53 selected articles, the most common anticancer drugs loaded were doxorubicin, 5-fluorouracil, curcumin, cisplatin, and miR-34a.
- The articles also employed a variety of both ZIFs and natural/synthetic zeolites. 36 studies utilized ZIFs, 9 utilized faujasite (FAU), 5 utilized Zeolite A/Linde Type A, and 3 utilized clinoptilolite.

Discussion

	What is it?	Problems	How can zeolite help?
Doxorubicin	 An anthracycline antibiotic intercalates between the base pairs of DNA → inhibits topoisomerase II activity → prevents DNA replication → hinders protein synthesis 	 lack of specificity strong cardiotoxicity cytotoxicity multidrug resistance in cancer cells 	 ↓ tumor volume; ↑ apoptotic cells dual stimuli (ie. NIR laser, glutathione) further ↑ specificity co-delivery with verapamil HCl or photosensitizers → reverse multidrug resistance and induce apoptosis.
5-fluorouracil	 antimetabolite drug inhibits activity of thymidylate synthase and incorporates its metabolites into RNA and DNA 	 lack of specificity cytotytoxicity 	 Can also add metal ions + organic ligands for synergistic therapeutic effect ↓ drug release in circulation, 个 circulation time, 个 biocompatibillity
Cisplatin	 crosslinks with DNA's purine bases to cause DNA damage and interfere with its repair mechanisms → apoptosis in cancer cells 	 lack of specificity cytotytoxicity multidrug resistance in cancer cells 	 ↑ specificity through pH- and ATP- responsive nanoplatform ↑ cellular uptake and ↓ toxicity than cisplatin alone co-delivery with oleanolic acid → reverse multidrug resistance and induce apoptosis.
Curcumin	 natural phenolic drug from turmeric contains curcuminoids that block growth enzymes, modulate cellular progressions, and inibit lipid peroxidation and ROS production 	 Poorly soluble in aqueous solutions → poor bioavailability → somewhat mitigated by a high dosage in oral formulations 	 high drug encapsulation, good chemical stability, and fast drug release in tumor microenvironment ↑ cytotoxicity to HeLa; ↑ antitumor efficacy in mice
mi-34a	 nucleic acid drugs that plan a vital role in miRNA modulation therapy 	 delivery challenges due to <i>in vivo</i> stability and low delivery efficiency 	 ↓ anti-apoptotic Bcl-2 → ↑ apoptosis inhibit oncogenes AEG-1 & SOX-9 inhibit tumor growth via synergistic gene/chemodynamic therapy

Figure 1: The pH-sensitive zeolite can selectively release anticancer drugs into the acidic tumor microenvironment while minimally impacting normal cells.

- Polym. Ed.

Conclusions

 In vitro and in vivo tests reveal that **loaded zeolites/ZIFs successfully delivers** conventional chemotherapy drugs into the tumor microenvironment and enhance cancer cell uptake of the drugs. Innovative surface modifications of zeolites can ↑ effectiveness of drug delivery **Future directions: 1)** More in vivo studies to further support zeolites' tumortargeting potential. 2) extend the application of zeolites/ZIFs to other types of cancers, such as oral cancer.

Works Cited

1. Yang F, et al. pH-responsive mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin against osteosarcoma. Mater. Sci. Eng. C. 2. Lei Z, et al. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. J. Biomater. Sci.

¹ School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA ² Dental Polyclinic Zagreb, Zagreb, Croatia ³ Yeditepe University, Istanbul, Turkey ⁴ University of Zagreb, Zagreb, Croatia ⁵ Juraj Dobrila University of Pula, Pula, Croatia ⁶ University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA