

Structure-based modeling of peptide/MHC-I complexes

<u>Sagar Gupta¹</u>, Santrupti Nerli³, Andrew C. McShan², and Nikolaos G. Sgourakis² ¹School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA ²Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA ³Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA

sagarg@upenn.edu

Discussion

 Multi-template modeling allows for sampling of natural and diverse peptide backbones for underrepresented alleles in the PDB

A feed forward neural network was used as a coarsegrain classifier which reduced a number of incorrect templates for multi-template modeling.

On average, the number of templates decreases by 56% across 41 alleles displaying 214 peptides in the PDB while maintaining sub-angstrom accuracy among the top five best scoring structures for 89% and top scoring models for 68% of the peptides.

RosettaMHC modeled sub-angstrom structures for 6 out of 7 SARS-CoV-2 peptides in the top five best scoring templates

Conclusions

 RosettaMHC is a pan-allelic comparative modeling method that can predict structures of pMHC complexes with sub-angstrom accuracy

As more pMHC crystal structures become available, the accuracy of our method is expected to increase

Since *RosettaMHC* is accurate and high-throughput, it is highly applicable for research of peptide-

mediated immune response

In the future, we can use HLAs from other vertebrates to train the neural network and expand the template

Acknowledgements

Sourakis Lab:

Nikolaos Sgourakis, Santrupti Nerli, Andrew McShan, Hau Truong, Claire Woodward, Yi Sun, Omar Ani, Georgia Papadaki, Viviane Silva de Paula

NIAID (5R01AI143997) NIGMS (5R35GM125034).

References

(1) McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol. 2015 Jan 29;6:21. doi:

10.3389/fmicb.2015.00021.

(2) Szeto C, Chatzileontiadou DSM, Nguyen AT, Sloane H, Lobos CA, Jayasinghe D, Halim H, Smith C, Riboldi-Tunnicliffe A, Grant EJ, Gras S. The presentation of SARS-CoV-2 peptides by the common HLA-A*02:01 molecule. *iScience*. 2021 Feb 19; 24:2. doi:

10.1016/j.isci.2021.102096.

(3) Nguyen AT, Szeto C, Jayasinghe D, Lobos CA, Halim H, Chatzileontiadou DSM, Grant EJ, Gras S. SARS-CoV-2 Spike-Derived Peptides Presented by HLA Molecules. *Biophysica*. 2021 May 19; 1:2. doi: doi.org/10.3390/biophysica1020015