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Learning Continuous Chaotic Attractors with a Reservoir Computer

Abstraction on Lorenz Attractors

Motivation
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Training the RNN

Neural networks have the ability to learn and abstract 
information from only a few examples shown, with the 
implications being that we can improve artificial intel-
ligence in many fields, such as self-driving cars, while 
allowing us a deeper understanding of how these 
computers make these computations.
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Methods

Limit cycle equation: 

Abstraction on Limit Cycles

Lorenz attractor equation:

Reservoir computer equation: 
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When the feedback loop is closed, the
outputs become the new inputs, which

drives the RC autonomously.

Autonomous RC equation: 
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We show the RC multiple discrete examples shifted in one dimension, and 
the RC will abstract in an additional fourth dimension to create a continu-

ous Lorenz attractor. When calculating the Lyapunov exponents of the RC, 
a second 0 LE appears, indicating successful abstraction.

This method of abstraction could be applied to other attractors as well. 
Humans perform abstraction when making inferences or predictions, so an 

RNN performing abstractions could provide insight into the mechanisms 
humans utilize.

PCA Analysis

We show the RC multiple discrete examples shifted in one di-
mension, and the RC will abstract in an additional third dimension 

to create a continuous limit cycle attractor. The PCA analysis 
highlights the additional dimension, on the delta R axis. When 

calculating the Lyapunov exponents of the RC, a second 0 LE ap-
pears, indicating successful abstraction.
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