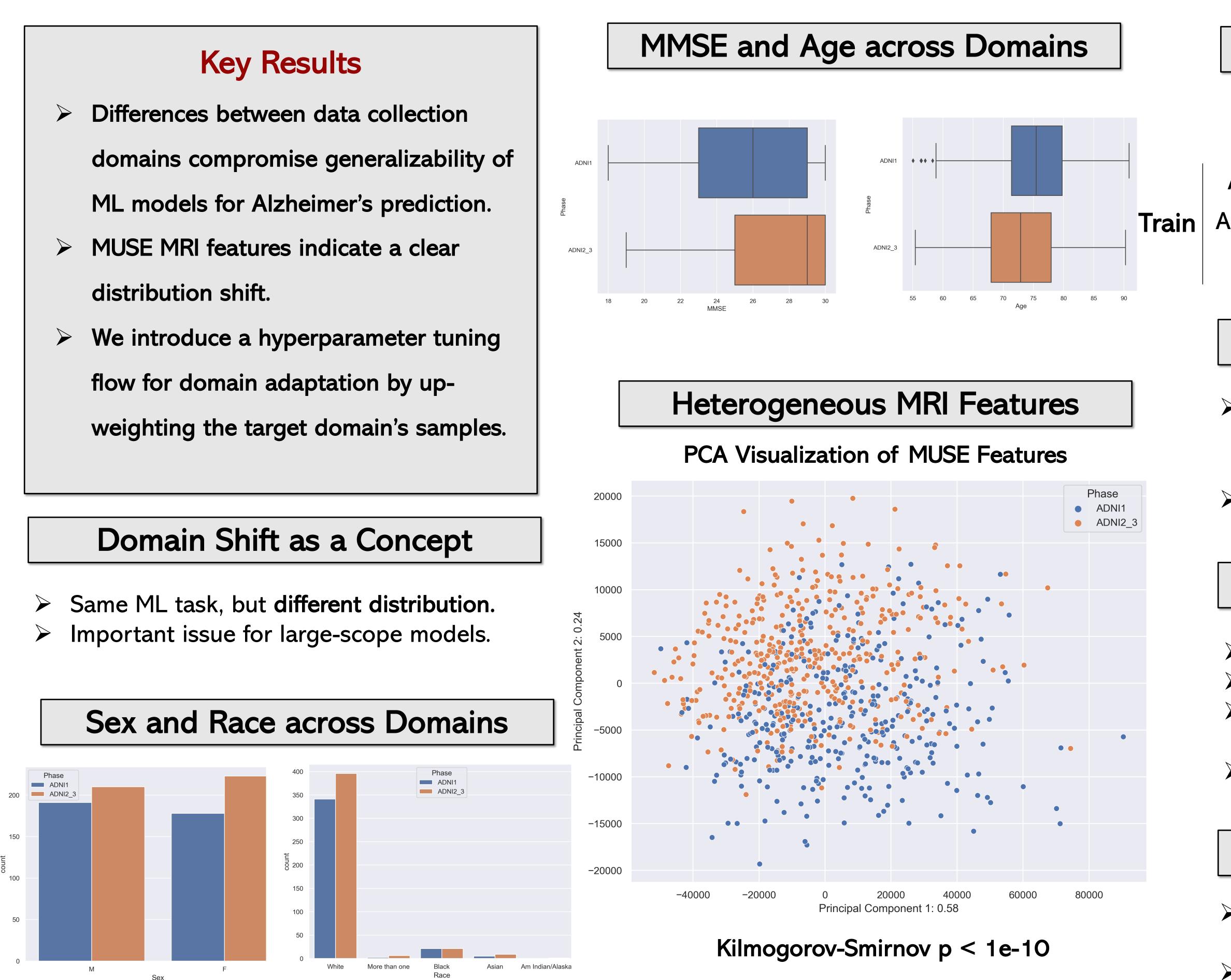
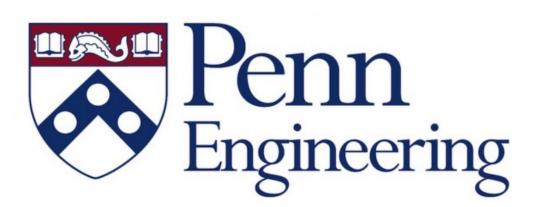
Domain adaptation techniques preserve model accuracy across MRI imaging modalities

Key Results				
	Differences between data collection			
	domains compromise generalizability of			
	ML models for Alzheimer's prediction.			
	MUSE MRI features indicate a clear			
	distribution shift.			
	We introduce a hyperparameter tuning			
	flow for domain adaptation by up-			
	weighting the target domain's samples.			



Aalok Patwa (SEAS 25 & W 25)

Advised by Prof. Pratik Chaudhari through a PURM grant.



Model Accuracy Across Phases

		Test	
_	ADNI1	ADNI2/3	Combined
ADNI1 (n=369)	0.919	0.893	0.904
ADNI2/3 (n=433)	0.878	0.942	0.913
Combined	0.892	0.977	0.938

Applying Domain Weights

Performance is skewed by domain.

- $l = -w_n(y_n \log(p_n) + (1 y_n)\log(1 p_n))$
- Use case for class imbalance + domain shift

AutoML HPO for Weights

Sample-weight parameter in AutoGluon Ray can do HPO over continuous space Combined training set: 0.98 accuracy Optimal alpha: weight ADNI2/3 by 0.74 > Exclude half of ADNI1: 0.97 accuracy > Optimal alpha: weight ADNI2/3 by 0.4

Future Directions

> Nonlinear relationship between frequency ratio and alpha -> raises questions Representation-based learning approaches