

Background

- Routine mammography screenings have been shown to lower mortality rates due to breast cancer. However, conventional mammography has a low sensitivity for the population of women with dense breasts.
- Contrast enhanced dual energy mammography (DEM) can improve tumor detection for this population (Fig. 1).
- Currently used iodine-based contrast agents for DEM have several drawbacks such as their contraindication for use with renal insufficiency, high-dose requirement, and sub-optimal contrast.

Figure 1. Example of contrast-enhanced DEM. Three images are created in DEM: A) low energy image, B) high energy image, and C) subtraction image which clearly shows a mass in the upper breast. Image from Lalji and Hobbes.

Introduction

- Molybdenum disulfide nanoparticles (MoS₂ NPs) are known to produce x-ray contrast at clinically reasonable energies.
- Clinical translation of MoS₂ NPs as contrast agents is dependent on their ability to be rapidly eliminated from the body to minimize long-term toxicity concerns (Fig. 2).

Figure 2. Renal clearance of nanoparticles. Ultrasmall particles (< 5 nm) can be rapidly cleared through renal filtration and urinary excretion pathways.

<u>Objective</u>: Develop ultrasmall MoS₂ NP contrast agents for DEM with the aim of improved contrast, stability, clearance, and biocompatibility.

Synthesis and Purification

- Aqueous solutions 2-mercaptopropionic acid (2MPA), sodium sulfide (Na_2S) , and sodium molybdate (Na_2MoO_4) were combined (Fig. 3).
- The particles were purified by dialysis overnight, filtered using 20 nm filters, and concentrated by lyophilization.
- The molybdenum concentration in each sample was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES).

Na₂S

Na₂MoO₄ RT 10 min

Figure 3. Synthesis of MoS₂ nanoparticles with 2MPA coating.

Ultrasmall MoS₂ Nanoparticle Contrast Agents for Dual Energy Mammography

Emily K. Berkow¹, Katherine J. Mossburg², Lenitza M. Nieves³, Derick N. Rosario³, Andrew D.A. Maidment⁴, David P. Cormode^{2,4} ¹Department of Chemistry (2024), ²Department of Bioengineering, ³Department of Biochemistry and Molecular Biophysics, ⁴Department of Radiology, University of Pennsylvania

on a Hologic Dimensions clinical mammography system using a tissue-mimicking phantom B) Representative CT image collected on a Siemens SOMATOM clinical CT scanner at 80 kV. C) Quantification of CT attenuation rates at varying x-ray energies.

References

Figure 1: Lalji U, Lobbes M. Contrast-enhanced dual-energy mammography: a promising new imaging tool in breast cancer detection. Women's Health (2014) 10(3): 290.