

Co-loading Dexamethasone Palmitate in siRNA-LNPs

Danish Mahmood¹, Serena Omo-Lamai², Marco Zamora², Jacob Brenner²

1. University of Pennsylvania, SEAS (2025). 2. Pulmonary Allergy and Critical Care, Perelman School of Medicine

Introduction

- RNA lipid nanoparticles (LNPs) are immunostimulatory and exacerbate pre-existing inflammation
- The ionizable lipid component of LNPs signals through toll-like receptors (TLRs) to activate the NLRP3 inflammasome.
- Dexamethasone (Dex) is a clinically safe and upstream suppressor of inflammation.
- Dexamethasone palmitate (DXP) is a lipophilic precursor that metabolizes into Dex by ester cleavage in blood.

Methods DXP Loading and Leakage (Ultra-Performance Liquid Chromatography, UPLC) Lipid Phase LNP Size (CKK-E12 + DSPC + (Dynamic Light Scattering, Cholesterol + PEG2000) DLS) **Laminar Flow Mixing** Centrifugal Filtration Aqueous Phase **RNA** Encapsulation (Scrambled siRNA) (Nanoassemblr Ignite) (Amicon, 10K MCWO) (Quant-it Ribogreen)

Hypotheses

- DXP can be stably loaded into the lipid phase of siRNA-LNPs
- DXP will be retained in LNPs

Discussion

- LNPs formed a homogenous population of ~80 nm diameter spheres with a stable ~90% siRNA encapsulation.
- ~66% of total DXP loaded into the LNPs and DXP leakage plateaued at ~26% over 6 days.

Future Steps

- Evaluate inflammation suppression of LNPs in vivo
- Co-load MCC950, a specific and lipophilic, NLRP3 inhibitor

Funded by Grants for Faculty Mentoring Undergraduate Students (GfFMUR)