
Given a set 𝑋 of 𝑁 noisy observations, and possible statistical models 𝑀1, 𝑀2, … , 

we seek the model 𝑀 that is the best explanation for 𝑋.

• Occam’s razor penalizes more flexible/complex models (typically to avoid 

overfitting noise in the observations), while also considering the likelihood of 

observing 𝑋 under each model. 

• The optimal trade-off between likelihood and model complexity is given by 

Bayesian model selection. The evidence for a model requires integrating over 

its entire parameter (𝜃) space with respect to some prior 𝑤(𝜃) over parameters:

𝑝 𝑋 𝑀 = න𝑑𝜃 𝑤 𝜃 𝑝 𝑋 𝑀 𝜃

• Fisher information approximation (FIA) of the log evidence ratio identifies 

four measures of model complexity that the optimal decision depends upon:

1. Dimensionality: the number of parameters of the model (akin to BIC);

2. Boundary: introduced when the maximum likelihood (ML) estimate along

the model 𝑀( መ𝜃) for 𝑋 is at the boundary of the model;

3. Volume: range that the model can cover by varying 𝜃 in data space;

4. Robustness: related to the curvature of the model towards/away from 𝑋.

• In statistical model selection, Occam’s razor prefers the simplest model for a

set of observations, when multiple models explain the observations equally well1.

• Occam’s razor plays a role in human perception and decision-making2-6.

However, a general, quantitative account of the specific nature and impact of

model complexity in human decisions is missing.

• When faced with uncertain evidence, naive human subjects bias their decisions

in favor of simpler explanations, in a way that can be quantified by the

framework of Bayesian model selection.
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Explain Different Sensitivities to Four Complexities

• In each trial, given two possible shapes (black lines):

• Chose one shape to generate observations randomly with equal probability.

• Sample the location of a Gaussian center uniformly within the chosen shape.

• Sample 𝑁 = 10 observations (red dots) from a 2D Gaussian with the center above.

• Given only the two shapes and 10 observations, the subjects decides which shape

(model) is more likely to contain the center of the Gaussian.

• Four task types correspond to the four Bayesian model complexity measures.
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How Occam’s razor guides human inference
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Novel Deep Neural Network Architecture

• We designed a novel deep neural network architecture and trained it on the task, to

show that the complexity terms are learnable quantities that impact decision accuracy,

(a) Novel deep network architecture. It intakes the observations as a data vector and the two models as images. It outputs a

decision between the two models (encoded as a softmax vector). The pre-trained convolutional neural network (CNN) VGG16 is

used for model image processing, and conditional variational autoencoders (C-VAE) assist learning of the data generation

process. (b) Population level estimates of the sensitivity to each model complexity fitted for 10 trained networks, which differ

only in random initialization. The logistic regression intakes a complexity-independent up/down bias term, the data likelihood

(ml), and differences in the four Bayesian complexity terms computed for the two models, to predict the network’s decisions.

Dotted red line: a Bayesian observer would have sensitivity=1 to all complexities. Solid blue line: an observer without simplicity

bias would have sensitivity=0 to all complexities. The networks’ fitted coefficients normalized with respect to likelihood (reflecting

relative sensitivities to likelihood and each complexity term) are close to the Bayesian optimal value of 1.

• Model selection: data is better described by considering model complexities, instead of considering

only the minimum distance between model and data and reporting the model with maximum likelihood.

• Hierarchical Bayesian model: Humans intuitively bias away from more complex models, but with

quantitatively different levels of sensitivity for each of the four model complexities.

(a) K-nearest-neighbor interpolation of subject choices (green=up, pink=down), as a function of the centroid of the observations, pooled over 𝑀 =
202 subjects. K is chosen by 10-fold cross-validation. (b) Population and subject level estimates of the sensitivity to each model complexity. Dotted

red line: a Bayesian observer would have sensitivity=1 to all complexities. Solid blue line: an observer without simplicity bias would have

sensitivity=0 to all complexities. Dark gray dots: posterior mean for complexity terms and bias/likelihood for individual subjects. Light gray bars:

standard deviation of the posterior distribution for the same parameters. Subjects ranked based on the mean posterior (dark gray).
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Control experiment: Point-Point and Line-Line model pairs.

• No difference in model complexity within each pair;

Higher sensitivity to Dimensionality is not related to difference in noise

levels for the point and line individual models.

Possible Heuristic: counting the point model as the 11th data point.

• Then, regressing using the correct model complexity terms would

overestimate the sensitivity to Dimensionality.

Maximum Likelihood task: ask human subjects to only consider the

closest point along each model to the data points.

• Discourages consideration of model shape and thus complexity;

• Strong human tendency to remain sensitive to model complexity.

• Further investigate sensory noise in estimating the location of data points, as a potential

source of sensitivity differences to different model complexities.

• Further validate the normative framework and human biases on other model selection tasks.
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