

Exploring Quantification Methods for Simple and Complex Tandem Repeats on Nanopore Sequencing Data

INTRODUCTION

A tandem repeat is a sequence of DNA bases that is repeated many times within a chromosome. Tandem repeats can be grouped into variable number tandem repeats (VNTRs) and short tandem repeats (STRs). The key difference between these two groups is that VNTRs consist of comparatively longer repeating units. Because STRs and VNTRs each make up approximately 3% of the human genome and are highly variable from person to person, they are often analyzed as markers for identification. Outside of genetic identification, tandem repeats are particularly important because they are often associated with diseases like Huntington's disease, fragile X syndrome, and bipolar disorder.

Historically, genotyping of tandem repeats has included labor-intensive and costly methods like PCR followed by gel electrophoresis. The advent of next-generation sequencing, whereby genetic information is rapidly sequenced in short segments, allowed for more efficient analysis. However, because pathogenic repeats are often hundreds to thousands of base pairs long, long read sequencing can provide a better estimations of expansion length, especially for patient samples with highly expanded repeats.

This summer, my research involved analyzing large datasets by generating summary statistics, calculating sample enrichments, and estimating repeat counts. The focus of my project was to explore and evaluate different methods of quantifying tandem repeats (both VNTR and STR) based on long-read sequencing data, specifically from Oxford Nanopore Sequencing.

OBJECTIVES & SIGNIFICANCE

My main project involved working with Nanopore data generated by Dr. Egli's lab at Columbia University on INS and GFP VNTRs. The objective of my research was conduct analysis on two samples datasets to quantify how many repeats existed in specific regions of interest. Afterwards, I looked to evaluate repeat estimate results from multiple different methods to gauge their efficacy and precision.

Repeat estimation is important for many reasons. Diseases associated with STRs often display a phenomenon known as genetic anticipation, whereby the risk of disease increases as generations pass (and STRs proliferate). Oftentimes the probability of disease also increases alongside repeat count. Being able to accurately quantify repeats allows for a better understanding of STR expansion disorders.

METHODS & DATA VISUALIZATION

Regions of interest for Columbia VNTR data:

- chr9: 27573484-27573547 GCCCCG
- chr11: 2161569-2161976 CTGTCCCACACCC

Data was split into 2 samples:

- VNTRA48 data from 09/24/2021
- VNTRA48 data from 03/11/2021

Fig. 1: Data analysis workflow for VNTR data

Integrated genomics viewer (IGV) was used to visualize sequence data. The breaks in the sequence are the investigated repeat expansions. Fig. 2: IGV view of chr11 VNTR

EMBOSS Needle was used for pairwise alignment; repeat count was then inferred by counting repeats between anchor sequences (where lines connect ref and read). Fig. 3: EMBOSS Needle alignment

read	1151 GCTGGGTCTGTGGGAAGATCTCCTTGGTCGTCAGCACCTCTTCCTCAGGA	1200
ref	1	Θ
read	1201 CCAGCGGGTCATTAGAGTCTTAACCAGGAGCCCGGTGGCCAGACCTGTCC	1250
ref	1TGGGGGCAAATGTCTCCAGGAGA-GCAAAGCCCTCACCT	38
read	1251 CTGCTCACAGCTGGGGGCAAATGTCTCCAGG-GAGGCAAAGCCCTCACCT	1299
ref	39 GGGCCACTTTCCACATTAGACCAGGAGAGCTGGAGGCTGCAGGGCGGG	86
read	1300 GGG-CACTTTCATTAGACCAGAGCTGGAGGCTGCGGGGGGGGGG	1342
ref	87 GCTCTTTGCGCTG	99
read	1343 GCTCTTTGCGCTGCGTCCCCGGACCCCTGTCCCCAGGACCCCTGTCCCCA	1392
ref	100	99
read	1393 GGACCCCTGTCCCCAGGACCCCTGTGCCCACACCTGTCCTCGGACACTGC	1442
ref	100	99
read	1443 TAGGGACCCTGTCCCCGGACCCACATTTTGGAGCCCCTGTCCCCAGTCCA	1492
ref	100 CGGATGGCCCAAGATGCCGCCATGGATGG-GCCAAGGTGGTGGGGGGTG	146
read	1493 CGGATGGCCCAAGATGCCATCCCATGGGGTGACAAGGTGGTGGGGGGGTG	1540
ref	147 GGAGAGTGGGAGTGAGGGAGGGGTCCCCTCCCTGCTGGCTG	196
read	1541 GGAGAGTGGGAGTGA-GGAGGGTCCCCCCCCCCCACTGGCTGCCTAGTTCC	1589
ref	197CACC	200
read	1590 TTTGCCCTTGGGACAGCAGCCCCAGCTGGGAGCCTCAGCTCACAGGAGTG	1639

Kyle Liao, PURM, College of Arts and Sciences, Class of 2025

Faculty Mentor: Kai Wang | Perelman School of Medicine at the University of Pennsylvania, Department of Pathology and Laboratory Medicine | Children's Hospital of Philadelphia

• chromosome: starting base-ending base – repeating motif

RESULTS & CONCLUSIONS

LongReadSum was used to generate summary stat the Columbia VNTR datasets, including information reads, total bases, and mean read length.

Fig. 4: Summary statistics for 09/24 data

Measurement	Mapped	Unmapped	All
#Total Reads	40,019	205	40,224
#Total Bases	669,577,214	165,165	669,742,379
Longest Read Length	187,851	7,811	187,851
N50	31,992	1,065	31,982
GC Content(%)	43.3	55.1	43.3
Mean Read Length	16731.5	805.7	16650.3
Median Read Length	10,280	504	10,197

Fig. 5: Summary statistics for 03/11 data

Mapped	Unmapped	All
4,629	109	4,738
26,228,110	52,076	26,280,186
77,912	2,477	77,912
11,613	513	11,590
41.6	55.0	41.6
5666.0	477.8	5546.7
3,155	368	3,033
	Mapped 4,629 26,228,110 77,912 11,613 41.6 5666.0 3,155	MappedUnmapped4,62910926,228,11052,07677,9122,47711,61351341.655.05666.0477.83,155368

Enrichment estimates were also calculated for each This was done by calculating the ratio of the average of each nucleotide in the region of interest to the dep sample relative to the whole genome.

Fig. 6: Enrichment estimates

Sample	Avg. Depth	Sample Depth	Sample I
09/24	12.814	0.216	59.1
03/11	7.274	0.00851	855

For the 2 samples, the region of interest at chr11 ha approximately 60- and 850-times enrichment for 09/ 03/11 respectively.

After using EMBOSS Needle pairwise alignment fo manual repeat counting between anchors (fig. 3), as feeding reads split by allele into NanoRepeat and RepeatHMM, results were stored in the following tak

Fig. 7: Comparison of VNTR Repeat Estimate Re

09/24 Data										
Method	Read Count (GFP)	Average Repeat Count (GFP)	Read Count (INS)	Average Rep Count (INS)						
EMBOSS Needle	0	0	12	9.83						
NanoRepeat	1	10	8	9.75						
RepeatHMM	0	0	12	8.67						
03/11 Data										
Method	Read Count (GFP)	Average Repeat Count (GFP)	Read Count (INS)	Average Re Count (INS)						
EMBOSS Needle	0	0	4	9.75						
NanoRepeat	0	0	6	9.83						
RepeatHMM	0	0	4	8.5						

Overall, samples of VNTRA48 had very few suppor reads for the GFP allele, making comparison betwe hard if only GFP allele read count was available. The count for INS allele reads in both samples average between 8 and 10 across all methods of repeat det NanoRepeat estimates are closer to manual estimates terms of average repeat count.

				DIS	SCL	JSSI	ON	& E	XTE	ENSI	ON			
tistics of like total	This analysis of VNTR datasets yielded evidence that both RepeatHMM and NanoRepeat are accurate for estimating VNTR repeat count and calculated similar results to manual repeat estimation.													
	Fo ge Di (H th b) Co m	For future extension, I am currently working with data generated by Dr. Li Fang, Dr. Mas Monteys, and Dr. Davidson at CHOP. There are 11 Huntington's Disease (HTT) cell lines where repeat count is inferred/validated through Sanger sequencing. HTT is known to be caused by a STR expansion of trinucleotide CAG repeats. Comparing results from different tools would allow for a more standardized comparison between tools when evaluating their repeat detection ability.												
n sample. ge depth epth of the	Pi Ni ce ba lir Bo Fi	relin ano ell lir arco ne. T oth t	ninai Rep ne is de/b The l tools 3: Cc	ry res eat o unic arco HTT prov ompa	sults on ea quely ode). regio vide ariso	of ru ach ce iden A1B0 on of simila on of	nning tified 4/A ² ntere ar es repe	g Re e are l by t 1 B05 est is timat e at E	peat e dep wo b is a s chr tes to stim	HMM bicted arcoo norm 4: 30 [°] 4: 30 [°] 5 valio ates	and belo des (1 nal hu 7487 datec for H	w. E form Ima 6-30 I res ID I i	Each nat: n cell 07493 sults. i nes	39.
	Sanger	Barcodes CAG #	A1B01/A1B01 57	A1B02/A1B02	2 A1B02/A1E	41B03/A1B03	A1B04/A1B0	4 A1B04/A1B0	5 A1B05/A1B0	05 A1B06/A1B06 40	A1B07/A1B07	A1B08/A1E	40 A1B09/A1B09	A1B10/A1B10 72
Enrichment	RepeatHMM NanoRepeat	Allele 1 Allele 2 Allele1 Allele2	18 56 17 55	20 41 19 40	26 47 26 45	22 42 21 41	19 38 18 38	18 18 17 n/a	19 40 18 39	19 41 18 39	18 42 17 40	41 41 21 40	18 40 17 39	16 68 15 67
as /24 and llowed by s well as ble. esults	1. 2. 3. 4. 5. 6. 7. 8. 9.	Guppy Li, H. (3100. <u>9</u> Li, H. 6 Issue LongR Biotec Madein EMBL- ManoF Liu, Q. repeat https:// Fang, on sigr	t <u>https://</u> 2018). doi:10./ et al. Th 16, 15 / eadSur son, J., hnol 29 ra F, Pe EBI in Repeat <u>1</u> disorde (doi.org L., Liu, nal data (doi.org	/nanopo Minima 1093/bio ne Sequ August 2 m <u>https:</u> Thorval 0, 24–26 earce M, 2022. N https://g g, P., Wa ers by Ic v/10.118 Q., Mor a from n	pretech p2: pair pance A 2009, P //githuk ldsdótti (2011) , Tivey lucleic ang, D. pithub.c ang-rea <u>6/s130</u> nteys, <i>A</i> anopor <u>6/s130</u>	REI .com/ rwise alig atics/bty1 lignment/ ages 207 o.com/WC r, H., Win . https://c ARN, et a Acids Rei om/WGL et al. Inte d sequer 73-017-0 A.M. et al e sequer 59-022-0	FER mment f 91 Map for 8–2079 6Lab/Lo ckler, V oi.org/ ckler, V oi.org/ 1. Sear search. ab/Nan errogati cing. G 456-7 DeepF cing. G 2670-6	Cornucle rmat an ongRead V. et al. 10.1038 ch and s 2022 A oRepea ng the " cenome	CES eotide se d SAMte //doi.org dSum Integrat /nbt.175 sequenc pr:gkac2 t unsequ <i>Med</i> 9, direct q <i>Biol</i> 23,	equence ools, <i>Bio</i> <u>10.1093</u> ive geno 240. DOI enceable 65 (2017 uantifica 108 (20	s. <i>Bioinf</i> <i>informat</i> 3/bioinfo omics vie sis tools 1: 10.109 e" genon 7). tion of sh 22).	ormati ics, Vo rmatic wer. A service 3/nar/ nic trine	cs, 34:30 olume 25, <u>s/btp352</u> <i>lat</i> gkac240. ucleotide	94- oeats
peat	١١	vou	ld lik	to to	AC than	KNO ik my	WL men	. ED (GME Dr. W	ENT: /ang,	S as w	ell a	as	
rting	U M ar	maii onte nd h	r Ahs eys, elp (san, and ☺.	Dr. L Dr. E	i Fan Davids	g, D son f	r. Qia or th	an Li eir p	u, Dr. atien	Egli, ce, g	Dr. uida	Mas ince,	
en tools						0			•					
ne repeat		•	V . I -			C		IAU						
ection.	LI	ao, nive	ryie rsitv	of P	enn	svlvai	nia							
ates in	E	mail	: <u>kyl</u>	<u>eliao</u>	@sa	as.upe	enn.e	<u>edu</u>						