Active Simultaneous Localization and Mapping in Unstructured Environment with a Quadrotor

Siming He1, 2, Mentor: Prof. Pratik Chaudhari1
1The Wharton School of The University of Pennsylvania, 2University of Pennsylvania School of Engineering and Applied Science
Sponsored by the Wharton Summer Program of Undergraduate Research

Introduction

- An agent performing Simultaneous Localization and Mapping (SLAM) constructs a map of the environment while estimating its location at the same time. They can be formulated as a smoothing problem of belief state (finding the best estimation of agent location and landmarks in the environment):

\[X^*, \theta^* = \arg \max_{X, \theta} B_r(X, \theta) = \arg \max_{X, \theta} P(Q|X, \theta) \]

\[\cdot \prod_{t=0}^{n} P(z_t|X_{t-1}, u_{t-1}) \]

where \(X \) are states of the robot over time, \(\theta \) are locations of each landmark, \(Q \) are robot odometry data. The joint belief can be represented as a graphical model and can be optimized through graph-based optimization approaches.

- These algorithms do not typically address how an agent should explore an unknown environment to build a map efficiently. This ability for active exploration is important for autonomous robots to work in unknown, unstructured environments such as forests or caves.

- This paper proposes an active SLAM system that allows an agent to explore its surroundings, using visual-inertial data from an RGBD camera. We formalize this problem as taking actions that maximize the amount of information obtained from the scene.

System Design

- Truncated Signed Distance Field (TSDF) Map is used to represent the environment into voxels (3D cubes that is comparable to pixels of images). Each voxel contains its distance to the closest surface and how certain is this distance estimation. This representation is chosen since it contains information that measures how well each voxel is estimated.

- Sampling viewpoints: States of the robot is sampled uniformly for multiple times. For each of the sampled viewpoint, we want to measure the amount of utility gain after moving to this viewpoint.

- Utility gain: Utility gain is designed with two considerations. Firstly, utility gain should be higher if moving to the viewpoint reduces more uncertainty of our mapping of the environment. Secondly, utility gain should be lower if the robot need to move longer to reach the viewpoint. Hence, we defined the following utility function:

\[U(V) = U_{\text{surface}}(V) + U_{\text{new}}(V) + U_{\text{frontier}}(V) \]

where \(U_{\text{surface}}(V) \), \(U_{\text{new}}(V) \), and \(U_{\text{frontier}}(V) \) are the amount of information gain of observing surface voxels, new voxels, and frontier voxels.

References

Conclusion

We implemented an active SLAM system and test it on a drone. The experiment results show that the system can explore the environment and construct a map. However, the map is not detailed, and improvements can be made in the future. The following are some assumptions in our implementation that need to be changed for improvements:

1. The assumption that the agent has perfect knowledge of its pose is unrealistic and localization uncertainty would cause inaccurate mapping results.
2. Unexplored regions have a fixed information gain in this system. It is not a good approximation since it doesn’t show which unexplored region to go to especially in larger state space. Prediction of unseen regions or information gain of unseen regions would be needed.