
- An agent performing Simultaneous Localization and Mapping 
(SLAM) constructs a map of the environment while estimating 
its location at the same time. They can be formulated as a 
smoothing problem of belief state (finding the best estimation of 
agent location and landmarks in the environment):
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where 𝑋 are states of the robot 
over time, Θ are locations of each 
landmarks, 𝑍 are robot’s 
observations of landmarks, and 𝑈
are robot odometry data. The 
joint belief can be represented 
as a graphical model and can be 
optimized through graph-based 
optimization approaches.
- These algorithms do not typically address how an agent should 
explore an unknown environment to build a map efficiently. 
This ability for active exploration is important for autonomous 
robots to work in unknown, unstructured environments such as 
forests or caves. 
- This paper proposes an active SLAM system that allows an 
agent to explore its surroundings, using visual-inertial data 
from an RGBD camera. We formalize this problem as taking 
actions that maximize the amount of information obtained from the 
scene. 

- Truncated Signed Distance Field 
(TSDF) Map is used to represent the 
environment. It discretizes the 
environment into voxels (3D cubes 
that is comparable to pixels of 
images). Each voxel contains its 
distance to the closest surface and how 
certain is this distance estimation. This 
representation is chosen since it 
contains information that measures 
how well each voxel is estimated.
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Figure 2: Overall System Design

Figure 3: TSDF Visualization

- Sampling viewpoints: States of the robot is sampled uniformly for 
multiple times. For each of the sampled viewpoint, we want to 
measure the amount of utility gain after moving to this viewpoint. 
- Utility gain: Utility gain is designed with two considerations. 
Firstly, utility gain should be higher if moving to the viewpoint 
reduces more uncertainty of our mapping of the environment. 
Secondly, utility gain should be lower if the robot need to move 
longer to reach the viewpoint. Hence, we defined the following 
utility function:
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where 𝑈!"#$%&' 𝑉 , 𝑈(') 𝑉 , and 𝑈$#*(+,'# 𝑉 are the amount of 
information gain of observing surface voxels, new voxels, and 
frontier voxels.

Figure 4: TSDF, Sampled Viewpoints, and Utility Gain

Figure 5: Mapping Result by Intel RealSense camera
mounted on a custom-built quadrotor

In the TSDF, redder voxels are 
voxels with more certainty. The 
triangles are sampled viewpoints. 
Triangles with redder color are 
viewpoints with more information 
gain. 

Conclusion

We implemented an active SLAM system and test it on a drone. The 
experiment results show that the system can explore the environment 
and construct a map. However, the map is not detailed, and 
improvements can be made in the future. The following are some 
assumptions in our implementation that need to be changed for 
improvements:
1. The assumption that the agent has perfect knowledge of its pose is 

unrealistic and localization uncertainty would cause inaccurate 
mapping results.

2. Unexplored regions have a fixed information gain in this system. It is 
not a good approximation since it doesn’t show which unexplored 
region to go to especially in larger state space. Prediction of unseen 
regions or information gain of unseen regions would be needed.

Figure 1: Graphical Model of Joint Belief of States
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