ABSTRACT

Climate change refugia represent geographical spaces that are naturally
buffered from the effects of macroclimatic changes to a certain extent due
to their ecological and geological features, such as topography, specific
species, and ecosystem services. Conserving spaces that have the potential
to protect climate stability 1s a vital adaptation strategy to minimizing
climate change impacts where possible. However, conserving these spaces
requires research into how to identify regions that meet criteria with the
potential to foster climate change refugia. Climate scientists have begun to
develop various frameworks for identifying climate change refugia, which
has provided important results. Some frameworks are discovered to favor
different ecological and geological factors over others, while others remain
unbiased. By analyzing climate refugia supportive features and discovering
the extent to which the Cascades ecoregion 1s vulnerable to climate change
as a case study, understanding how these spaces can be reflected in broader
adaptation strategies within the U.S. 1s possible. This research can provide
relevant guidance for the future i1dentification of climate change refugia and
their adaptive capacity in other regions.

BACKGROUND

The IPCC has recognized climate change refugia as having the
potential to serve a short to medium term benefit for climate
change management strategy, representing decades to a century,
as climate changes over time will eventually overwhelm the
ability of individual spaces to protect suitable microclimates
(Morell1 et. al., 2016). This theory fosters a sense of urgency that
necessitates climate refugia research to occur now and on a large
scale. climate scientists have turned to this theory to understand
how refugia can be utilized as an adaptation tool to address
threats from anthropogenic climate change. Conserving
topographically diverse spaces, like the Cascades, that have the
potential to support climate stability 1s a vital adaptation strategy
for minimizing climate change impacts where possible.
Additionally, understanding individual spaces’ abilities to persist
and adapt based on specific features of climate refugia has
significant scientific implications as an Earth with a vastly
different climate approaches.
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METHODS

1. Spatial Extent of Research: North Cascades, 2. Ildentification
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3. Prioritization 4. Management
e Choosing areas to actively manage requires e What practices will maximize the stability of this
favoring select locations over others due to space?
constrained resources e Economic/Resource Feasibility Analysis
e Most resilient spaces with boundaries of e Implementation and Stakeholders

research area have been sorted based on
topography and protection status to find areas
that are unprotected with refugia that align with
the vulnerabilities of the region
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DISCUSSION AND CONCLUSIONS

e At this time, it’s largely unclear whether a refugia
management plan would be feasible in the Cascades
ecoregion, specifically the Eastern Cascades, but if it was, it
would look similar to the flow chart below (more detailed in
paper)

* Going forward, a cost-benefit analysis of leasing land for
extractive activity as well as using funding for near-term risk
mitigation is necessary to understand feasibility
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