

Microbial physiologies of anaerobic primary producers from the crustal subseafloor of the Juan de Fuca Ridge flank.

Leah Van Dyke^{1,2}, Natalia Aponte Borges¹, Jessica Choi^{1,3}, Kaliopi Bousses¹, Olivia Nigro^{3,5}, Stephanie Carr⁶, Michael Rappé^{5,7} and Ileana Pérez-Rodríguez¹.

¹Department of Earth and Environmental Science, University of Pennsylvania; ³Department of Ecology and Evolutionary Biology, University of Michigan; ⁴Department of Geography, University College London; ⁵Department of Natural Sciences, Hawai'i Pacific University; ⁶Department of Biology, Hartwick College; ⁷Hawai'i Institute of Marine Biology, University of Hawai'i

Abstract

Anoxic subseafloor crustal fluids (60-65 °C and pH 7.0-7.3) from Juan de Fuca Ridge (JdFR) flank were used to enrich and potentially isolate anaerobic chemosynthetic hydrogenotrophs driving primary production in these environments. Selective enrichments using H₂ as primary electron donor (PED), CO_2 or NO_3^- as a terminal electron acceptor (TEA), and CO_2 as the carbon (C) source were incubated at temperatures between 65 °C and 80 °C. Two successful CO₂ reducing cultures were obtained after six consecutive serial dilutions at 75 °C, and three NO₃⁻ reducing cultures were obtained after five consecutive serial dilutions at 65 °C or 75 °C. Cellular morphologies and sizes tend to vary between cultures, with CO₂ reducing cultures growing as small cocci capable of biofilm formation and NO_{3⁻} reducing cultures growing as small cocci that later develop into elongated filamentous cells and aggregates. Despite the higher free energy of reaction generally associated with the microbial oxidation of H_2 via NO_3^{-1} reduction, in comparison to the microbial oxidation of H_2 via CO_2 reduction, CO_2 reducing cultures showed significantly faster doubling times while also reaching higher cell densities *in vitro*. Observed growth differences between the two CO_2 reducing cultures and three NO_3^- reducing cultures could indicate a broader lifestyle adaptation to low NO₃⁻ concentrations in the highly reduced subseafloor that favors CO_2 reduction over NO_3^- reduction. Current molecular phylogenetic endeavors will help reveal the phylogenetic identities associated with the anaerobic chemosynthetic cultures generated from subseafloor crustal fluids of the JdFR flank.

Sampling

Anoxic subseafloor crustal fluids (65 °C, pH 7.0-7.3) sampled from borehole U1362B¹⁻⁴ on May 2019⁵ were used to enrich for CO_2 and NO_3^- reducing chemolithoautotrophs.

Enrichments

Conditions	CO ₂ Reduction	NO ₃ ⁻ Reduction
PED	H ₂	H ₂
TEA	CO ₂	NO ₃ -
C-Source	CO ₂	CO ₂
рН	7.0	7.0
% w/v NaCl	1.8	2.0
Temp	75-80°C	65-75°C
Base Media	DSM 141 ^{6,7}	modified SME ⁶⁻⁸

Serial Dilutions

Cultures 25 and Y displayed similar cell doubling times under enrichment temperatures (75 °C) and *in situ* (65 °C) temperature conditions. Cell doubling times for all cultures ranged from ~ 7 - 10 days. Highest cell densities were reached between 42 days for cultures Y and 25, and by 13 days for culture 34. Cells from all cultures had cocci shapes during early growth stages that appeared to elongate into filaments over time. Note: all microscopy images for all three cultures represent 0.5 mL of sample.

Culture OE displayed similar cell doubling times under enrichment temperatures (75 °C) and *in situ* (65 °C) temperature conditions. Cell doubling times for both culture OE and RF were ~ 1 day . Highest cell densities were reached between 9 days and 14 days for both cultures. Cells were small cocci that would aggregate over time and at times elongate during later stages. Note: all microscopy images for all three cultures represent 0.5 mL of sample.

Discussion

H₂-oxidizing CO₂-reducing cultures grew faster and to higher cell densities than H₂-oxidizing NO₃⁻-reducing cultures. Cell doubling times were not affected by temperature differences in CO₂- and NO₃⁻-reducing cultures. Growth of CO₂-reducing culture RF at *in situ* temperature conditions (65 °C) will be established in the future for comparison. Observed growth differences potentially reflect broader lifestyle adaptations that favor CO₂ reduction over NO₃⁻ reduction in the subseafloor crustal aquifer of the JdFR flank. Ongoing phylogenetic research efforts are focused on understanding the purity status of the cultures as well their genomic identities.

References

(1) Lin et al. (2012) Geochim Cosmochim Acta; (2) Nigro et al. (2017) mBio; (3) Lin *et al.,* (2020) Methods X; (4) Wheat *et al*. (2010) Geochem Geophys Geosyst; (5) AT 42-11 cruise report (2019), (6) Balch et al. (1979) Microbiol Rev; (7) Stetter et al. (1983) Syst Appl Microbiol; (8) Vetriani et al. (2004) Int J Syst Evol Microbiol.

Acknowledgments

We thank Beth Orcutt for leading expedition AT42-11 on May 2019, the science party, and the crew and pilots of R/V Atlantis and ROV Jason for their help in sample acquisition. We also thank John Carr for maintaining NO₃⁻ reducing cultures.