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Background

- Large Hadron Collider accelerates and collides beams of protons
together
- Result: hundreds of millions of proton-proton collisions
- Vast majority of collisions produce jets of low-energy hadrons
- In some theories of new physics, vanishingly small
amount of collisions do produce anomalous
phenomena.
- Detecting signal events in real time necessitates model that is:
- (Capable of filtering out the vast majority of data while
ensuring atypical information is kept
- Simple enough to meet hardware requirements

Methodology

- Model efficacy was determined by testing on 4 datasets, each
comprising one of the following signal events:
1. Zvvhbb events: 2 bottom quarks, 2 neutrinos
2. /Zttevents: 2tau's
3. Ttbar events: One top quark, one bottom quark
4. \/bfhhbbbb events: 4 bottom quakers

- 4 different models were tested: a supervised model, an
autoencoder, and two variational autoencoders.

Supervised Mode!

- Provided already labeled data (signal events labeled 1,
background events labeled 0)

- Trained on a mix of background (non-anomalous) events and
single signal event.

- Loss Function: binary cross-entropy

Autoencoder Model

- Unsupervised neural networks that reconstruct the input data
- Custom loss function: mean squared error (MSE) b/w input and
output if output > input, MSE * 0.1 otherwise
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Variational Autoencoder Models

- Similar in structure to Autoencoders
- Latent space is normalized distribution — points randomly
sampled
- Loss function consists of a reconstruction loss and a latent
space loss
- Two possible metrics for reconstruction loss: mean
squared error (MSE) and earth mover’s distance (EMD)
- One VAE constructed using each
- Separate model trained and utilized to estimate EMD
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- Relative utility of each model — ROC Curves & Efficiency Plots

ROC Curves

- Plots false positive rate against the true positive rate at
multiple thresholds

- Determine model that would maximize true positive rate at a
false positive rate of 10"-4

Efficiency Plots

- Plots ratio of events labeled anomalous by model to total
events, binned by MET (missing energy in each event)
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ROC Curves for Different Lines
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Conclusions

- Supervised model provides best tradeoff b/w TPR &
efficiency
- Autoencoder appears to provide better tradeoff than either
VAE
- Worse efficiency than either VAE made up by large
disparity in TPR

Future Directions

- Consider models based on additional autoencoder
architectures

- Look at efficiency of each model w/ respect to alternate
metrics (ex. total energy in each event)



