

Clinical Characteristics and Outcomes in Pediatric Hypertension Using EHR Data

Penn Undergraduate Research
Mentoring Program

Nikhita Pabbaraju, CAS '26, Mentor: Levon Utidjian, MD, MBI General Pediatrics at CHOP

Background

- Pediatric hypertension (HTN) has rapidly increased in prevalence over the last few decades and now affects up to 4.5% of children in the US and worldwide.
- HTN diagnosis guidelines are hard to follow, as interpreting blood pressure (BP) readings requires the child's sex, height and age to classify them as normal, elevated, or hypertensive (stage 1/2), instead of flat cut-offs
 - Pediatric HTN often goes unrecognized, and thus undiagnosed and untreated.
- This is a major issue as almost 10% of adult HTN could be prevented if childhood HTN was recognized and treated.
- A potential solution is a risk score model which can identify patients at risk of developing HTN using multiple pieces of clinical data to assess the likelihood of having a given condition.
- As preparatory work, we sought to describe certain clinical and demographic factors that differentiate patients who are and are not diagnosed with HTN.

Objective

To determine the clinical and demographic characteristics of pediatric patients with elevated BP readings to understand the factors most important to receiving a diagnosis of HTN.

Methods

Attrition Table	Identify the patients in the cohort from from all patients in the PEDSnet database using an 8-step attrition approach. This made sure all patients in the cohort met the hypertension history criteria.			
Clinical and Demographic Flags Table	Describe each patient by important clinical and demographic characteristics related to hypertension diagnosis including medications, other diagnoses, and blood pressure measurements.			
Split the Cohort into 2 Groups	The attrition cohort was divided into patients with HTN diagnosis and without HTN diagnosis, in order to compare the clinical features			
Statistical Comparison	Statistical comparison of each groups' counts were done using Pearson's Chi-squared test, and Wilcoxon Rank Sum Rank Test was used to compare the age at first elevated BP.			

Results

Table 1. Attrition table showing how cohort of 605,737 patients was constructed.

Attrition Step	Description	Number of Patients
1	All patients	9,107,649
2	At least 1 Outpatient Visit Between The Ages of 3-21 After 2011	5,436,542
3	At Least 2 Outpatient Visits At Least 3 Months Apart	3,405,213
4	Have 2 BP Measurements (7 Days Apart From Each Other)	1,846,244
5	Have 3 BP Measurements (Each At Least 7 Days Apart From Each Other)	1,522,102
6	Did Not Have A Htn Diagnosis Prior To The Age of 3	1,513,543
7	Did Not Have Elevated BP Prior To The Age of 3	1,448,232
8	At least 1 Elevated BP After the Age of 3	605,737

Table 2. Characteristics of overall cohort and subgroups with and without diagnoses of HTN

	nin Dx	NO HILL DX	Overall	p-value					
	(N=33,689)	(N=572,048)	(N=605,737)						
Sex									
		274,514	290,527						
Female	16,013 (47.5%)	(48.0%)	(48.0%)						
	,	297,534	315,210						
Male	17,676 (52.5%)	·	(52.0%)						
Race									
Asian/Pacific Islander	1,299 (3.9%)	21,021 (3.7%)	22,320 (3.7%)						
		110,225	114,807						
Black	4,582 (13.6%)	(19.3%)	(19.0%)						
Hispanic 5,366 (15.9%) 84,187 (14.7%) 89,553 (14.8									
Other	1,751 (5.2%)	28,711 (5.0%)	30,462 (5.0%)						
Unknown		25,304 (4.4%)							
		302,590							
White	19,748 (58.6%)	(52.9%)	(53.2%)						
Missing	<11 (0.0%)	<11 (0.0%)	13 (0.0%)						
Age at First Elevated Blood Pressure (years)									
Mean (SD)	11.15 (4.36)	9.45 (4.37)	9.54 (4.39)						
	11.58 [7.49 -	8.96 [5.57 -	9.08 [5.65 -						
Median [Q1-Q3]	14.84]	12.99]	13.13]						
Total length of follow-up (years) from fir	rst to last visit								
Mean (SD)	10.98 (6.14)	10.89 (5.38)	10.89 (5.42)						
	10.99 [6.21 -	10.97 [7.06 -	10.97 [7.02 -						
Median [Q1-Q3]	14.91]	14.26]	14.29]						
Has Type 1 Diabetes									
Yes	1,210 (3.6%)	17,586 (3.1%)	18,796 (3.1%)						
		554,462	586,941						
No	32,479 (96.4%)	(96.9%)	(96.9%)						
Has Type 2 Diabetes									
Yes	446 (1.3%)	3,756 (0.7%)	4,202 (0.7%)						
		568,292	601,535						
No	33,243 (98.7%)	(99.3%)	(99.3%)						
Total number of Steroid Prescriptions									
Mean (SD)	1.81 (5.36)	0.74 (2.60)	0.80 (2.84)						
Wicari (OD)	0.00 [0.00 -	0.00 [0.00 -	0.00 (2.04)						
	0.00 [0.00	•	0.00]						
Median [Q1-Q3]	1 001	() ()()1							
Median [Q1-Q3] Avg BMI 7-score across all measurements	•	0.00]	0.00]						
Avg BMI Z-score across all measureme	ents	·	Ť						
	ents	0.71 (1.11)	0.72 (1.11)						

Figure 1. Density plot of age at first elevated BP reading.

Discussion

- The overall cohort with at least one elevated BP was 605,737, and 5.5% had a diagnosis of HTN.
- Notable differences between the 2 subgroups:
 - The race distribution was significantly different, with Black patients underrepresented in the HTN group.
 - Black patients are historically at higher risk for HTN, so this was unexpected.
 - Diabetes (Type 1 and 2) was significantly more likely in the HTN group.
 - Age at first elevated BP was also significantly higher in the HTN diagnosis group.
- Limitations:
 - Relied on EHR data and chart review was not done to confirm results.
 - No cohort of confirmed HTN patients was available for comparison.

Next Steps

- Explore additional variables such as steroid use, number of hypertensive BPs before HTN diagnosis, differences in use of other classes of medications
- Use linear regression or machine learning approaches to help develop a potential risk score for development of HTN.

Acknowledgements

Thank you to the Penn Undergraduate Research Mentorship (PURM) program for funding this research. I would like to thank the PEDSnet Data Coordinating Center and my mentor Dr. Levon Utidjian for his guidance and support though this project.