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Methods

Results

Conclusions

How do these techniques 
generalize to non-epileptologists 

notes?

How do similarity-based techniques 
compare to standard classification?

• The Electronic Health Record (EHR) holds clinical information taken from the raw text of clinic notes written by healthcare 
providers

• Natural Language Processing (NLP) can be used to extract information out of this unstructured data
• However, these texts are vastly different: differing writing styles, medical jargon per specialty, and format
• We have previously explored Transformer-based models to extract outcomes from the clinic notes of patients with Epilepsy
• We explore similarity-based techniques taken prior literature [1] and how these generalize to other specialties

Used Similarity-Based Techniques 
with different embeddings
• Lbl2Vec
• Lbl2TransformerVec (SimCSE)
• Lbl2TransformerVec (SBERT)
• Lbl2TransformerVec (SBERT 2)

Seizure free keywords = ['seizure free', 'seizure stopped', 'denies seizures', 'no seizures', 'has 
not had seizures’]
Has seizure keywords = ['had seizure', 'seizure relapse', 'seizure occurred', 'seizures 
recurring', 'remittent', 'abnormal movements', 'having convulsions', 'hands shaking', 'confused’]
Unknown keywords = ['unknown', 'not', 'classify', 'unclear', 'last seen', 'stable']

Similarity Based Techniques

Model did not predict any as ”Unclassified” (2).  The label keywords are not specific and therefore the model does not 
perform well. 

Used phrases as label-keywords for the transformer similarity-based techniques. The embedding baseline for these techniques are sentence-based 
techniques.  

Epileptologist notes performed the best as expected. Similarity-based techniques did not 
perform as well as the standard classification [2].

Findings
• Similarity-based techniques perform better when it is the binary 

classification of “seizure free” or ”has seizures” because the keywords 
are specific.

• The models are better at classifying epileptologists notes when trained 
on epileptologist notes, but the worst at generalist notes

• There is not much consistency between varying Lbl2Vec techniques
• There is room for improvement in identifying keywords

Limitations
• Our approach is agnostic to the type of seizure and provides only one 

of each outcome measure per note, potentially missing information
• Seizures have varying severities and our NLP algorithms cannot 

account for or classifying that at this point
• Our notes and models were affected by copy-forwarded information, 

where a note author will copy previous notes into the current note, 
potentially introducing outdated/contradictory information. 
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The patients were classified as either Seizure Free (0), Has Seizures (1), or 
Could not classify (2). 

Tested on three different testing 
sets
• Epileptologist notes (test)
• Neurologist notes
• Generalist notes

Training text + Label 
keywords used to train 

model

Model similarity of each 
test document to every 

label

Model uses similarity 
scores to classify each 
document to a label

Lbl2Vec Lbl2TransformerVec (SimCSE) Lbl2TransformerVec (SBERT) Lbl2TransformerVec (SBERT 2)

Used words as label keywords for the Lbl2Vec as 
the embedding baseline is Word2Vec (word-based)

Similarity Based TechniquesGold Standard Annotations Epileptologist (n=1,000, 
700 training, 300 

validation)*

Neurologist (n=100) Non-neurologist (n=100)

Classification

Seizure-Free 30% 33% 30%

Not seizure-
free

62% 47% 35%

Unclassified 8% 20% 35%

Note contained seizure
frequency

36% 14% 7%

Note contained date of
most recent seizure

50% 48% 36%

Embeddings: numerical representations of 
words, in the form of real-valued vectors

Average 
(centroid) of 
document 
embeddings

New Label embeddings

Cosine similarity

Confusion Matrices

Seizure free keywords = ['seizure', 'free', 'none', 
'stopped’]
Has seizure keywords = ['seizure', 'relapse', 'occur', 
'recurring', 'having', remittent’]
Unknown keywords = ['unknown', 'not', 'classify']

Label Keywords

Not much consistency between techniques.  Generalist notes seems to perform the worst. Neurologist more generalizable. Lbl2TransformerVec (SimCSE) performed the best. 


