

Iron-Organic Contrast Agent for Xenon Biosensing Heejoon M. Shin^{*}, Nathan A. Rudman^{**}, Ivan J. Dmochowski^{**} *CAS 2026; **Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

Background

- ¹²⁹Xe, an inert anesthetic, has promising applications in magnetic resonance imaging (MRI) and spectroscopy (MRS) due to its $\frac{1}{2}$ nuclear spin and large chemical shift window.^{1,2}
- Self-assembled metal-organic cages are easily synthesized compared to cryptophanes and other capsules.^{1,2}
- By functionalizing these metal-organic cages, new Xe contrast agents can be used to increase the precision of current MRI technologies.

Iron-Organic Cage (Fe_4L_6^F)

Scheme 1: Synthesis of self-assembled iron-organic cage ($Fe_4L_6^F$); only one of the edges of the tetrahedron is shown with the rest of the edges being identical

Hyperpolarized ¹²⁹Xe Chemical **Exchange Saturation Transfer** (CEST)

The change in polarization of the hyperpolarized (hp) xenon can be quantified and gives a good indication of how well the cage would act as a contrast agent for MRI.

Figure 1: Hyper-CEST data for 50 μ M Fe₄L^F₆ 50 μ M where saturation offset is referenced to xenon in water. The lightly shaded region indicates the depolarization of aqueous hp Xe-129 by the fluorinated cage.

Crystallization of Fe₄L^F

Figure 2: Crystal structure of $Fe_4L_6^F$. Crystals were grown under nitrogen using guanidinium to help with the crystallization process; guanidinium is exhibited on each face of the tetrahedral structure. Red = oxygen, yellow = sulfur, gray = carbon, blue = nitrogen, and green = fluorine; hydrogens are not depicted (A) Guanidinium angle; (B) Iron angle

Iron Cage	Fe – Fe (distance)	Fe – N _{diamine} (distance)	Fe – N _{aldehyde} (distance)	Hyper-CEST	Guanidinium on faces
Fe ₄ L ^F ₆	12.892Å	1.979Å	1.977Å	Yes	4
$Fe_4L_6^H$	12.874Å	1.983Å	1.971Å	Negligible	1

Table 1: Comparison of crystal structure properties and hyper-CEST activity of the Fe₄L^H₆ (fluorine) cage, but all fluorine are replaced with hydrogen) and $Fe_4L_6^F$ cages. Despite similar shape and size, the two cages display different properties. Crystal structure data for $Fe_4L_6^H$ is from the literature³.

Ligand Exchange of Fe₄L^X₆ $Fe_4L_6^F + (i)^N \longrightarrow Fe_4L_6^H$

Figure 3: (A) Because the electron-withdrawing fluorine weakens the imine bond of the cage, reacting assembled $Fe_4L_6^F$ at 50 °C with a stronger electron-donating aldehyde results in the replacement of the fluoroaldehydes with the more electron-donating aldehyde, forming a new cage. (B) ¹H NMR of the reaction mixture of $Fe_4L_6^F$ and picolinal dehyde at 50 °C. The peaks in the blue shaded regions match the reported resonances of the hydrogen cage ($Fe_4L_6^H$).³

General Trend of Fe₄L₆^X

Figure 4: As the aldehydes on the cage contain a stronger electron donating group, the resulting cage becomes more air stable but exhibits less CEST signal perhaps due to strong bond strength.

Synthesized Cages Allow for Future Biological Applications

The unique properties of the fluorine cage set the stage for potential ligand exchange that can lead to an o-propargyl heteroleptic cage. Additional routes to functionalize the iron-organic cage are to add a targeting group through nucleophilic aromatic substation of $Fe_4L_6^F$ or through cross coupling of $Fe_4L_6^{Br}$.

Figure 5: Knowing that the o-propargyl (OP) is a donating group, we can substitute one of the 5fluoropicolinaldehydes on the fluorine cage with OP-picolinaldehyde. This would still allow the cage to exhibit good CEST-signaling while also enabling click chemistry to generate new targeted biosensors.

References

Palaniappan, K. K.; Francis, M. B.; Pines, A.; Wemmer, D. E. Israel Journal of Chemistry **2014**, 54 (1–2), 104–112. Schröder, L. Physica Medica 2013, 29 (1), 3–16. https://doi.org/10.1016/j.ejmp.2011.11.001. Mal, P.; Schultz, D.; Beyeh, K.; Rissanen, K.; Nitschke, J. R. Angewandte Chemie International Edition 2008, 47 (43), 8297-8301

