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Abstract

* Reliable MRI (Magnetic Resonance
Imaging) segmentation data is crucial
to the development of new
techniques that detect conditions,
such as Alzheimer’s, using MRI data.

* This research is intended to replace
traditional methods that involve a
human manually reviewing original
MRI images along with their
segmentation. This method is
problematic because it is:

* Time-intensive
* Labor-intensive
* Prone to human judgement

e Data was sourced from the
Alzheimer's Disease Neuroimaging

nitiative (ADNI) as well as the Penn

mage Computing and Science
laboratory (PICSL)

Results

* The neural network showed
reasonable accuracy

e The topological analysis
successfully processed over

10,000 MRI segmentation data

points

Materials and Methods

WL: 128.00 WW: 255.00
X: 1068px Y: 266px

Viewer Form

Please select a rating for the Left MRI
Segmentation

@®0(A score of 0 indicates a Good Image)
@1 (A score of 1 indicates a Bad Image)
®2(A score of 2 indicates a Not Sure
Rating)

Conclusions

 The resulting integration of the QC
system into Flywheel enhances
user engagement

* Contributes to improved data
quality, ensuring the reliability of
MRI segmentation data for medical
applications
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Training data includes the
original super resolution

MRI as well as its
segmentation, to mimic
human QC process

ResNet-18 Model Architecture

Objectives

* Build a new QC workflow for MRI + T ¥ Y
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