
Physics-Informed Neural Networks for Tracking the Hemodynamics of Dissected Aorta

Physics informed neural networks (PINNs) have grown from a toy machine
learning concept to very powerful and applicable in a variety of modern
problems. As PINNs continue to grow, they will inevitably be utilized more in the
fields of medicine and biology, where not only are the domains of interest
incredibly complex but information on them incomplete. We study PINN
performance in the said area via the lens of aortic dissections (AD) informed by
MRI scanning. Specifically, we consider the prediction accuracy of PINNs as a
function of 4D flow MRI in both spatial and temporal resolutions, and consider
PINN prediction of the gradient-based parameter, wall shear stress. Three AD
aneurysms are analyzed, those with large, medium and small mouths. These
mouths lack any boundary conditions making this an ill-posed problem with
standard computational techniques. We utilize PINN aided by 2D MRI data to
learn the hemodynamics of the domain. We conclude that full MRI resolution
may not be required, saving on scanning cost, and in the case of AD aneurysms,
larger mouths lead to more accurate results due to the larger order of magnitude
in the velocities which are easier for PINNs to learn.

Abstract

We examine the performance of PINN in predicting hemodynamics in realistic
3D dissected aortas reconstructed from apolipoprotein null mice infused with
AngII, a well-established animal model for studying the parthenogenesis and
pathology of aortic dissections. We train the PINN on three 4D geometries,
representing a small, medium and large aneurysm, respectively. The model is
trained using the Navier-Stokes equations and cross-sectional MRI data, and
predicts the blood flow velocity v=(u,v,w) and pressure P in the aneurysm. In
particular, we aim to demonstrate that PINNs allow us to only focus on assessing
the 3D flow field inside the false lumen without modeling the true lumen and
various branched vessels, thereby considerably reducing the amount of required
measurement data as well as eliminating the dependency of predictions on the
accuracy and availability of the boundary conditions. We will also systematically
evaluate the model performance on the temporal and spacial resolution of the
measurement data (i.e., from 4D MRI), aiming to minimize the data acquisitions
while maintaining the adequate accuracy for thrombosis prediction.

Objectives Results Results

Physics Informed Neural Networks (PINNs) use deep learning to solve partial
differential equations (PDEs). In the past few years their popularity has
significantly increased due to their ability to solve inverse problems as easily as
forward problems. PINNs work by embedding a PDE and its initial/boundary
conditions into a neural network’s loss function, and then training the network to
approximate the PDE’s solution.
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Figure 1. Schematic of PINN.

Methods

4D flow MRI provides in vivo measurement of blood flow dynamics in blood
vessels, or in our case an AD aneurysm. It provides a time-resolved 3D velocity
which consists of the magnitude of the velocity and the separate velocity
components. Depending on the resolution used by the MRI, the number of slices
in a given space may change as well as the number of snapshots - temporal
values at which these slices are provided. Here, we explore the impact of
changing both spatial and temporal resolution on velocity and WSS prediction.
We assume a maximum spatial resolution of 1.5 mm, and a maximum temporal
resolution of 30-40 ms. We test the following spatial resolutions: 20%, 40%,
60%, 80%, 100%, and temporal resolutions: 20%, 40%, 60%, 80%, 100%.

We set the loss function of the Neural Network to be

Where θ represents the model’s parameters and observables, and where the
PDE loss represents the Navier-Stokes equations:

The loss term for the boundary conditions is

And the data loss is calculated using mean square error.

We begin with a simple prediction, analyzing the medium aneurysm at a
medium level of resolution in both spatial and temporal coordinates. Figure 2
depicts 2D slices of the true and predicted velocity for the 60% max spatial and
at 60% max temporal resolution. We present the prediction near the center of
the mouth at z = 0 for overall velocity and all velocity components, a point that is
different from the MRI slices provided, meaning the position we are viewing has
not been seen by the neural network in the data loss. The prediction for Figure 2
is at t = 0, a time that we have MRI simulations for and the neural network was
able to visualize in the data loss.

We note that the overall prediction accuracy is high. It can be seen from the
reference solution that there are some eddies being formed in the u and v
velocity components. We also note that the general direction of the flow is in the
w direction, which is parallel to the flow in the connected artery. As such, the
dynamics of w are more straight forward than the other two components. This
has two primary effects: the magnitude of w will be much larger than the other
two components, and this relationship could change with the size of the mouth;
additionally, it also determines where the majority of the error is located. If w is
dominant, the PINN will focus on w far more than other components; potentially
causing higher relative inaccuracies in the calculation of u and v.

Figure 4. Diagram of Loss Function in Sequential Learning Method 2.

Figure 4. L2 Relative Error (a) small, (b) medium, and (c) large aneurysm as a function of 
MRI Resolution when both the MRI data and the PDE is used for training.  
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In the last two decades, computational fluid dynamics (CFD), which simulates
blood flow based on Navier-Stokes equations, has been widely employed to
illustrate complex blood flow patterns in macro and micro-blood vessels. While
the conventional CFD methods can provide 3D high-resolution estimation of the
hemodynamics inside patient-specific vessels, the reliability of their predictions
accuracy largely depends on the flow boundary conditions for all the involved
blood vessels, which may not always available. In addition, CFD simulations
entail large memory resources, time-consuming computation and cumbersome
preprocessing, such as mesh generation for geometries and boundary condition
setup, preventing their deployment to clinic settings.

Figure 2: Velocity components for the medium aneurysm at a medium resolution at
an observed snapshot.

Figure 3. L2 Relative Error (a) small, (b) medium, and (c) large aneurysm as a function of 
MRI Resolution when only data is used for training and no PDE. 

We now look at how L2 error varies as the number of slices and snapshots are
varied (Figures 3 and 4). The number of slices represents the spatial resolution,
while the number of snapshots represents the temporal resolution. We also run
the same tests on a model that does not use the PDE, and instead just predicts
using the MRI data. This provides a comparison of our model to a standard deep
learning approach. We observe that our model not only outperforms the data-
only model at high resolutions, but also experiences significantly lowers drops in
accuracy when the resolution is lowered.

Future Research:
Future work will look at using transfer learning to speed up training and lower
computational resources. The model can be first trained on lower resolution
data, before the full dataset is introduced.
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