A candidate-based screen to identify genes involved in sleep maturation
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Abstract

Sleep is a universal behavior among animals, despite leaving them defenseless and
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Figure 5. (A) Sleep trace showing constitutive knockdown of ringmaker (green) alongside genetic controls (th>luciferase, red; th>ringer scramble IR, blue). Sleep per 30 min window is plotted on hitps://doi.ore/10.1534/senetics.116.189589

the y axis for a 24h Iight—da.rk period. Depletion of ringer in DANs causes a sigpifica_nt increase in sleep, mosjc not.ably Fjay sleep. (B) Total sleep plotted f(?r e.ach genotype fr(?m the.sleep tr.ace in (2) Davie, K et al., (2018). A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell, 174(4), 982-998.20. https://doi.org/10.1016/.cell.2018.05.057
. . . . (A). Data were analyzed using Brown-Forsythe test and Welch ANOVA. (C) Activity index (beam breaks/ waking time) is plotted for each genotype showing increased sleep in th>ringer IR is not (3) Tubulin Polymerization Promoting Protein, Ringmaker, and MAP1B Homolog Futsch Coordinate Microtubule Organization and Synaptic Growth. Frontiers in
connections to a sleep homeostat (red). (B) As a fly matures, dopaminergic tone on sleep promoting neurons caused by changes to locomotor activity. Data were analyzed using a Kruskal-Wallis test. (D) Sleep trace showing temporally restricted adult knockdown of ringmaker (red trace) with a genetic cellular neuroscience, 13, 192. https://doi.org/10.3389/fncel.2019.00192

increases, leading to higher inhibition of SPNs and thus increased wakefulness (1). control (th>luciferase, blue trace). Restricting ringer depletion to adult DANs is sufficient to recapitulate hypoarousal phenotype seen by constitutive knockdown (A-C).

Figure 2. (A) Dopamine is a conserved arousal promoting cue. In the central fly brain, DANs (blue) make inhibitory
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